The Web's Grain

FIG 2.33: Frank Chimero's stunning responsive site, featuring a nav that never quits—or
hides (http://bkaprt.com/rdpp/02-27/).

elegant and complex, as the BBC and the Guardian have shown. —ALFRED HITCHCOCK (http:/bkaprt.com/rdpp/03-01/)

|
That’s not to say responsive navigation systems can’t be | €€ So many of the films made today are photographs of people talking.”
But I suspect that with all the challenges we face on the web, |

we should constantly search for opportunities to simplify our | THERE'S BEEN A CONSIDERABLE AMOUNT of writing about how |
. interfaces. If our responsive navigation can do that, we’ll be in to produce images as flexible as our layouts. In fact, all it takes
. a better position to show our users the way. is a single line of CSS: |
r% - |
}‘ max-width: 100%;
!“ }
\

| First discovered by designer Richard Rutter, this single rule says
that our images can render at whatever dimensions they want,
as long as their width never exceeds the width of their contain-
i : ing element. In other words, every image’s max-width is now
l| set to 100% of its container’s width (http://bkaprt.com/rdpp/o3-
| 02/). If that container gets smaller than the width of the image
inside it, our industrious little img will resize proportionally,
never escaping its flexible column.

56 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES IMAGES AND VIDEQOS §7




TR
Tha Hagments weme wrlien Off Aheed O QaNt BRI

FIG 3.1: A lead image from an article on the BBC News website. As the article’s width
changes, the image’s max-width: 100% allows it to resize proportionally (http://bkaprt.
com/rdpp/03-03/).

Alongside fluid grids and media queries, fluid images are one
of the three primary ingredients of a responsive layout. And as a
result, they’re nearly ubiquitous—open any responsive site, like
the BBC News’ lovely responsive layout, and you’ll find images
that expand and contract within their containers (Fic 3.1).

For me, it’s helpful to think of max-width: 1ee% as only
part of the story: there are issues of performance, delivery, and
design, and we’ll cover each in this chapter. In other words,
creating fluid images is just the first step toward creating more
responsive images. But before we abandon layout entirely, it’s
worth mentioning that images aren’t the only game in town;
after all, our designs need to incorporate other kinds of media,
like video. So let’s take a moment to make our videos as flexible
as our images, and continue from there.

Wide Column | Narrow Column

FIG 3.2: Nothing's ever easy on the web: setting our embedded videos to max-width: 100%

doesn’t quite work (http://bkaprt.com/rdpp/03-04/).

[OWARD FLUID VIDEOS

After the past few years of making flexible images, max-width:
100% might feel like a natural solution for fluid videos. Unfor-
tunately, it’s not quite as easy as that:

img,
object,
video {
max-width: 100%;

We've extended our CSS slightly, including embedded
objects and videos in our flexible rule. While this works, it
doesn’t really work. If we apply this rule to every video in our
responsive layouts, the width of those videos expands and
contracts alongside our fluid grid, but the Aeight remains fixed
(F1G 3.2). To see why, let’s take a look at the markup behind
our movie:

<video src="video-main.mp4" height="547"
width="972"></video>

|
\
|
\
58 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

IMAGES AND VIDEOS

59




& A Smmraition

FIG 3.4: Relying on JavaScript for
proportional videos is fine, but it's not as

smooth as a CSS-only approach—our script

MADEBY HAND 72 mite psaer

T

L |

FIG 3.3: Made By Hand, an exquisitely responsive design for an equally moving film series
(http://bkaprt.com/rdpp/o3-05/).

(A quick note: some third-party services might ask you to
use an object or iframe when embedding their video. The
following technique will work for those elements as well, but
we’ll be sticking with video for this demo.)

The markup seems pretty straightforward: the src of our
video element points to, ahem, a video file (video-main.mp4),
while the width and height attributes determine the dimen-
sions at which our movie should render. But with videos, those
last two attributes aren’t optional—because unlike images,
videos and other embedded objects don’t have intrinsic dimen-
sions, so we have to specify them in our HTML. And while we
can use max-width: 1ee% to override our video’s width, we
can’t do the same with height: if we used, say, height: auto,
our videos would collapse to zero pixels in height and be invis-
ible. And darn it, the internet needs its cat videos to be visible.

But luckily, there are a whole host of approaches to making
videos resize properly, many of which involve a little light
JavaScript. For example, take a look at the responsive site for
Made By Hand, a beautiful set of short films featuring rather

inspirational individuals (FiG 3.3). (Responsive or not, the film
series is visually stunning and emotionally moving. I highly
recommend it.) Since the site’s responsive, you can view their
videos right in your browser, no matter how wide or small your
screen might be. To do so, the site’s designers wrote a pinch of
JavaScript to measure the video when the page first loads, and
store the dimensions for future use. After that, whenever the
page resizes itself—or the orientation of a device changes—the
video resizes proportionally, using calculations based on those
initial measurements.

Many responsive sites have adopted similar JavaScript-en-
abled tactics. Unfortunately, if you resize your browser while
using these sites, you might notice a slight visual stutter. As
the design resizes, it often takes a fraction of a second for the
video to catch up (F1G 3.4). This is partially a performance issue:
tying JavaScript to the resize event can slow down browsers,
or potentially even crash them. But it also underscores the
problem in relying on JavaScript for critical parts of our layouts.
A significant population of mobile users relies on browsers
that offer limited or no JavaScript—and on unstable cellular
networks, there’s no guarantee our JavaScript will even reach
our users.

Thankfully, building completely fluid videos is a solved
problem. What’s more, it doesn’t require a lick of JavaScript.
You see, way back in 2009, Thierry Koblentz wrote an article
demonstrating how to create videos that resize proportion-
ally in flexible layouts (http://bkaprt.com/rdpp/03-06/). And his
approach is, frankly, ingenious.

2 causes a slight stutter as our design resizes.

60 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

IMAGES AND VIDEOS

61




! 547px

Fic 3.5: Behold a video, embedded in a web page. (I feel like an announcer on one of those
wildlife shows.)

Let us pause, if only for a moment, to regard a video on
a website. This could be any website, but the homepage for
the Made By Hand film series is as good as any (FiG 3.5). If we
view that page at a viewport width of, say, 1024px, the video’s
dimensions are 972x547—that is, 972px wide and 547px tall.

But if we look past the pixels, were really trying to preserve
the relationship between two characteristics of our video—
namely, its width and its height. And as it happens, those two
measurements have a deep and fundamental connection to each
other: the aspect ratio, measured from one corner of the video to
its diagonal opposite (FIG 3.6). Luckily for us, we can calculate
that aspect ratio by using a simple formula:

height + width = aspect ratio

If we plug in the dimensions of our 972x547 video, were left
with the following:

62 RESPONSIVE DESIGN: PATTERNS AND PRINCIBLES

- 972px

547pX ASPECT RATIO

|
|
[
|
\
|
i
|
L

FIG 3.6: The aspect ratio of images and movies describes the relationship between the
element’s width and its height.

547 + 972 = 0.562757202

By dividing the height of our video (547px) by its width (972px),
we're left with an aspect ratio of 56.2757202%. So as the video
resizes, the height of the video should remain roughly 56% of
the video’s width.

We'll come back to that percentage in a bit, so put it in your
back pocket for now. (Or your cargo shorts, if that’s your met-
aphorical legwear of choice. No judgment.) With the math out
of the way, let’s go back to the video element in our HTML:

<video src="video-main.mp4" height="547"
width="972"></video>

As simple as this markup is, let’s make two small adjustments
to it:

IMAGES AND VIDEOS 63




<div class="player">
<video src="video-main.mp4" height="168"
width="300"></video>
</div>

Not much has changed, but we’ve sized the video down consid-
erably, setting its width and height to be small-screen-friendly
by default. (After all, there’s no need to plop a massive video
onto smaller screens, right?) More significantly, we've added a
little more markup: namely, there’s an element wrapped around
our video element—we’ve chosen a div with a class of player
here, but the container could be anything you want.

But once it’s combined with the aspect ratio we measured
previously, that unassuming container is the key to making
our video responsive. Let’s begin by applying some styles to
the outermost div:

.player {
padding-top: 56.2757202%;
}

Okay, maybe not so much “styles” as “style”: with one rule,
we've added a padding-top equal to the aspect ratio we calcu-
lated earlier. But why, you might ask? Well, according to the CSS
specification, percentages on padding-top and padding-bottom
are relative to the width of the containing block, not the height
(http://bkaprt.com/rdpp/03-07/). As a result, that vertical padding
will always be 56.2757202% of the box’s width.

Here’s a quick example: I've rooted around in my browser’s
inspector, and removed the video from the Made By Hand
homepage. I also disabled the JavaScript that resized the video,
and added that padding-top to its container. And finally,
because I am a very professional web designer, I added a not-
at-all-garish background color (Fic 3.7). But as we resize the
design, the padding-top resizes as well: it's always roughly
56% of the container’s width. In other words, our container
div might be completely empty, but it has an intrinsic aspect
ratio. No matter how wide or small that block gets, its height

64

RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

FIG 3.7: By applying the aspect ratio as
padding-top: 56.2757202% a percentage-based padding-top to our
container, we've created an empty
“ghost box.”

MADEBY HAND 72 s s [ ~ MADEBYHAND 7= it Acoicr

m “m T Bike Maker
padding-top: 56.3757202%;
padding-top: 56.3757202%;

padding-top: s6.3757303%;

FIG 3.8: As we resize our padding-top-enabled box, it maintains the shape and proportion
our video needs, without a single scrap of content inside.

will always be 56.2757202% as tall as its width. The empty area
created by our padding-top is aspect ratio-aware (FIG 3.8).

Pretty darned cool, right? Well, I think it’s cool. (I might
have just figured out why I'm never invited to any parties.)
But it’s only the foundation for our flexible video. With that
percentage-based padding-top in place, we can go back to our
CSS and add a few more styles:

IMAGES AND VIDEQOS 65§




FIG 3.9: With some proportional math
and a little extra markup, our video is now
resizing responsively—all without a single
line of JavaScript.

1l HD vimeo

.player {
position: relative;
padding-top: 56.2757202%;

¥

.player video {
position: absolute;
left: ©;
top: ©;
height: 100%;
width: 100%;

)

To begin, we've added position: relative to the .player
container. This creates what’s known as a positioning context:
any element absolutely positioned inside the context of that
container will now be positioned relative to .player, rather
than the viewport. And that’s what allows the second rule to
work: we’re positioning the video in the top left corner of
.player. Immediately after that, we're setting the video’swidth
and height to 10e%, which ensures that they’ll be equal to the
width and height of their containing element. ~

If we return to our browser and reinstate the video, we can
see the final effect in action (F1G 3.9). Remember, that container
has an intrinsic aspect ratio: thanks to the percentage-based
padding-top, the height of our . player box will resize propor-
tionally, no matter how wide it becomes. With that in place,
we’ve taken our video and—with some absolute positioning—
stretched it across the entirety of our container. And the effect
is much, much smoother than if we’d relied on JavaScript.

66 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

With nothing more than a little proportional math and an extra
container, we've got fluid videos resizing seamlessly within a
responsive design.

max-width: 1ee% is, of course, wonderful—but only for inline
images. For flexible background images, we have a num-
ber of helpful CSS properties available to us—most notably,
background-size.

Typically, when were applying background images to an
element, we're asking the browser to render that image at its
native resolution. Here’s a fairly basic background rule:

.intro {
background: url("bg-demo.jpg") no-repeat;

The browser will apply bg-demo. jpg to our .intro block,
and render that image at its native dimensions. And that’s the
outcome regardless of whether the image in our rule is four
thousand pixels wide or fourteen—if the image happens to be
wider or taller than the containing block, the extra pixels won’t
be displayed.

However, we can override that behavior with the
background-size property, which allows us to specify the size
we'd like our images to display at. We can specify lengths as
well, ensuring that our image displays at 25ex4ee:

Jintro {
background: url("bg-demo.jpg") no-repeat;
background-size: 25@px 400px;

Alternately, if we specify one of the lengths as auto, the
image will scale proportionally to a specific width or height. For

IMAGES AND VIDEQOS

67




example, a background-size of 25epx auto sets our image’s
width to 25epx without distorting its aspect ratio:

Jntro {
background: url("bg-demo.jpg") no-repeat;
background-size: 25@px auto;

We can even define our background-size in percentages,
scaling the image relative to the dimensions of its container. So
if we wanted our image’s width and height to be 50% of . intro’s
width and height, our rule would look like this:

.intro {
background: url("bg-demo.jpg") no-repeat;
background-size: 58% 50%;

}

As fun as background-size is, it’s worth noting that older
versions of Internet Explorer (versions 8 and lower) don’t sup-
port it. If you're worried about fallbacks for those older brows-
ers, I might suggest a variation on Paul Irish’s conditional com-
ments technique (http://bkaprt.com/rdpp/03-08/). In fact, you
can see this in the HTML for http://responsivewebdesign.com/:

<!DOCTYPE html> &
<!--[if IE]><![endif]-->
¢!--[if 1t IE 9]> <html class="oldie ie">

<![endif]-->
<l-=[if IE 9] ¢html class="ie ie9">
<![endif]-->

¢l--[if gt IE 9]> <html class="ie"><![endif]-->
<!l--[if 'IE]»<!--> <html> <!—<![endif]-->

With those conditional comments in place, older versions of TE
will have a class of oldie applied to their opening <html> tag.
As a result, T can apply an acceptable fallback style by starting
a second selector with .oldie:

68 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

Background &4 cson= Background
| Overflow Overflow

SPEND LESS TIME MANAGING
AND MORE TIME MAKING.

1 T

FIG 3.10: By using background-size: cover, the lead photo on Virb's responsive
homepage proportionally resizes to, well, cover its container.

.intro {
background: url("bg-demo.jpg") no-repeat;
background-size: 50% 50%;

}

.oldie .intro {

background-image: url("bg-demo-noresize.jpg");

With our fallbacks sorted, let’s take a look at two incredibly
useful keywords we can apply to the background-size prop-
erty: cover and contain. Let’s start with cover:

Antre {
background: url("bg-demo.jpg") no-repeat;
background-size: cover;

}

The browser will evaluate the width and height of the back-
ground image, and find the smaller of the two values. Once
that’s done, it will scale the image proportionally, ensuring that
the smaller dimension—either the width or the height—covers

IMAGES AND VIDEOS 69




& container =

FIG 3.11: Need your background image to be completely visible and flexible? There’s a L

background-size: contain for that.
FIG 3.12: Vox's responsive homepage is a stunning combination of background images and

its container. You can see this in action on Virb’s responsive
homepage (http:/bkaprt.com/rdpp/03-09/). The lead image’s
native dimensions are 16eex6@e. Since the height (600 pixels)
is smaller than the width (1600 pixels), the image stretches
vertically over the height of its container (FiG 3.10). No matter
how large—or small! —that box becomes, the background scales
proportionally to perfectly cover it.

Applying background-size: contain will also scale our
backgrounds, but the resulting layout is quite different:

.intro {
background: url("bg-demo.jpg") no-repeat;
background-size: contain;

Whereas background-size: cover may occasionally hide parts
of our images from view, background-size: contain ensures
the entire background is always visible within its container
(FIG 3.11).

When combined with background-position, background-
size can create some really stunning image treatments, The

70 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

lovingly typeset text (http://bkaprt.com/rdpp/03-10/).

homepage of Vox.com combines the two properties beautifully
(F1c 3.12). Each of the blocks show featured stories and head-
lines with a flexible background image:

.content {
background: url("beyonce_grammy.jpg") no-repeat;
background-size: cover;
background-position: center, center;
height: 60@px;

Rather than anchoring their images top and left within
each block, Vox uses background-position: center,
center to, well, center them within their containers (FIG 3.13).
And with that positioning in place, background-size: cover
ensures that each block is covered by a perfectly centered,
flexible background.

In theory, Vox could use media queries to load different
images at certain breakpoints, perhaps loading in wides-
creen-appropriate crops as the viewport expands:

IMAGES AND VIDEOS

71



.content {
background: url("beyonce_grammy.jpg") no-repeat;
background-size: cover;
background-position: center, center;
height: 608px;

}
@media screen and (min-width: 39em) {
.content { -
background-image:
url("beyonce_grammy-medium.jpg");
¥
I3
@media screen and (min-width: 6@em) {
.content {
background-image:
url("beyonce_grammy-wide.jpg");
background-position: @ @;
}
}

The sky is, as the kids say, the limit.

SCALING RESPONSIBLY: SRCSET AND SIZES

There are some very real downsides to simply scaling or shift-
ing images with a bit of CSS. But thankfully, there are tools to
help us tackle them. Let’s step through each in turn.

First, CSS-based resizing can often be bad for the weight
of our work. As of the middle of 2015, the average weight of a
web page was 2.1MB (http://bkaprt.com/rdpp/03-11/), up from a

relatively paltry 320KB in 2010 (http://bkaprt.com/rdpp/03-12/).'

And most of that weight? You guessed it: images. Our beloved
JPGs, PNGs, and GIFs comprise more than 60% of that 2.1MB
footprint—over 1.2MB per page on average.

Most of that has come about with high-density displays. In
2012, web developer Jason Grigsby found that the Apple.com
homepage jumped in size from 500KB to well over 2 MB, sim-
ply by upgrading its images to higher-resolution versions that

72 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

Everything you need
to know to
understand the
Grammy's 83
categories

Why movies about race are usually
terrible, in one paragraph

Fox's miniseries
Wayward Pines is
everything wrong

with TV. And [ love it

A new streaming service just for

classic TV and film launches today

—and it's free i e s o
Mochingjay

50.

The internet is full of men who hate
feminism. Here's what they're like

he absurd reason the' §
DA bans many
fransgender women

more )

FIG 3.13: By applying background-size: cover to their centered background images,
Vox.com can feature content alongside rather evocative—and completely flexible—

background images.

would look crisp on high-density screens (http:/bkaprt.com/
rdpp/03-13/). And Apple’s not alone—as our screens have gotten
sharper, our images have gotten bigger, bulking up our pages.
Given this ever-increasing page size, we should attend to the
amount of data we're asking our users to download, rather than
simply squishing down massive images to fit smaller screens.
Now, to be clear: “small screen” does not imply “slow connec-
tion.” Far from it. In fact, there is no correlation between the
width of a screen and the amount of bandwidth available to it.
My laptop could be tethered to a phone’s 3G connection, on a
steady ethernet connection, or on a hotel’s barely-functioning
Wi-Fi network; conversely, my phone could just as easily be on
a fast, reliable Wi-Fi network as it could be connected to a flaky
cellular signal. Right now, there’s simply no way to detect the
amount of bandwidth actually available to our users’ devices.
To their credit, browser and hardware vendors are working
on ways for us to detect a user’s connection speed, like the

IMAGES AND VIDEOS

73




Network Information API (http://bkaprt.com/rdpp/03-14/), but
a standard solution hasn’t been established yet. In the short
term, I think that uncertainty is actually okay. If anything,
it emphasizes the need to reduce the amount of data we're
serving to our users, regardless of the size of their screen. Jake
Archibald, a developer advocate for Google Chrome, suggests
that lower-end networks should be our true priority (http://
bkaprt.com/rdpp/03-15/):

It’s important to focus on 3G load times, because even though
we have 4G now, those users are on 3G (or worse) a lot of the
time: a quarter of the time in the United States, half the time
in large parts of Europe.

The commercial benefits of lighter pages are legion. GQ
(http://bkaprt.com/rdpp/03-16/) recently found that its respon-
sive redesign was entirely too slow—but by reducing page
load time by 80%, its number of unique visitors jumped by
80% (http://bkaprt.com/rdpp/03-17/). If we assume all our users
may have low bandwidth, it can help us lighten our sites and
create interfaces that are fast for everyone—whether accessed
on mobile, desktop, or something else entirely.

And that brings us back to flexible images. Those massive
images can be resized to fit on smaller devices, but even if those
tiny screens are on fast connections, they’ll be downloading a
lot of pixels they won't use. It’s invisible overhead, and we should
reduce it whenever possible. Thankfully, some standards-based
tools are emerging to help us tackle this problem, authored by
the Responsive Issues Community Group (http:// bkaprt.com/
rdpp/03-18/). They’ve worked with browser vendors to produce
a number of additions to the HTML specification, specifically
some attributes to make our images a bit more intelligent.

To begin, let’s look at our dear friend, the humble img element:

<img src="img/main.jpg" alt="A friendly-looking dog"
/>

Nothing too fancy, right? Our img element has a src that points
to the URL of an image file (img/main.jpg), accompanied by

74 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

some accessible alt text to describe the contents of our image
("A friendly-looking dog"). And if we've done our job right,
main.jpgshould show up in our browser. But here’s the thing:
that image file is going to be served to every browser and device
that accesses our page, regardless of its network speed, screen
density, or viewport size.

To help our image scale more efficiently, we’ll add one of
the new responsive image tools: namely, the srcset attribute.

<img srcset="img/main-200.jpg 2x, img/main-300.]jpg
3x" src="img/main.jpg" alt="A friendly-looking
dog" />

...okay, hold on a moment. Our once-pristine img element now
looks like a Perl script threw up in the middle of our HTML.
What, pray, is all that gibberish inside our srcset attribute?
Commas? 2x? 3x? What is happening here?

Thankfully, it’s not as bad as it looks. To decipher our srcset
attribute, let’s make it more legible:

<img srcset="img/retina.jpg 2x,
img/retinarck.jpg 3x"
src="img/normal. jpg" alt="A friendly-looking dog"
/>

That’s a bit better. What we've done is create three different
versions of our image, each identical, but with different pixel
densities: their dimensions are the same, but they're tailored
to be viewed on increasingly higher-resolution displays. And
inside our srcset, we're simply spelling out the path to each
image, and then describing its ideal pixel density—2x, 3x, and
SO o1.

With those images and resolutions spelled out, our img tag
is no longer loading one image for all screens: instead, our
srcset is filled with options of multiple images that could be
loaded, depending on which is best for the user. Armed with
that information, the browser can select the image best suited
to the density of the display. That prevents us from saddling

IMAGES AND VIDEOS

75




main-large.jpg main-medium.jpg main-small.jpg

FIG 3.14: Our three new images. Each of them is identical, except for their dimensions:
they’ve simply been scaled down.

lower-resolution screens with incredibly complex images, and
conserves some bandwidth in the process.

Neat, right? Unfortunately, those x descriptors are intended
for fixed-width images, which are so, like, 1999. But all is not
lost: we can use srcset to negotiate images based on the width
available to them in the layout. Let’s look at another img:

<img srcset="img/main-large.jpg 1440w,
img/main-medium.jpg 720w, img/main-small.]jpg 36ew"
src="img/main-medium.jpg" alt="A friendly-looking

dog" />

And yep, once again, that looks a little terrifying. Sorry about
that! Once you’ve climbed down from the flagpole, we can
add a few well-placed line breaks, and produce something that
looks a bit more sane:

76 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

<img srcset="img/main-large.jpg 1440w,
img/main-medium.jpg 726w,
img/main-small.jpg 360w"
src="img/main-small.jpg" alt="A friendly-looking
dog" />

As before, we've created three different versions of our image—
but this time, they’re each identical except for their scale: they
only vary in size (FIG 3.14). Similarly, our srcset spells out
the paths to each image, separated by commas. But this time,
instead of using 2x or 3x modifiers to describe the density
of the image, we're describing each image’s width in pixels,
followed by a w. Since main-large.jpg is 1440px wide, the
1440w allows us to tell the browser its native width. The same is
true for our 72@px-wide main-medium. jpg and our 36epx-wide
main-small.jpg—each is described as having widths of 720w
and 36ew, respectively.

(Quick aside: sharp readers will note that in both of our
code snippets, there’s still a src on our img elements. Strictly
speaking, src is required by the responsive images specifi-
cation—your images must have src attributes, even if you're
using srcset (http:/bkaprt.com/rdpp/03-19/). This might seem
redundant, but is actually a boon for backwards compatibility.
If a browser doesn’t understand srcset, it’ll still download an
image.)

After specifying three different widths for the lead image,
you might be wondering how we decide which image the
browser loads. And that’s a perfectly reasonable thing to won-
der! But here’s the thing: we don’t. If you read the specifica-
tion, there’s nothing telling browsers how to “pick” the best
option from srcset (http://bkaprt.com/rdpp/03-20/). It’s up to
the browser to choose the best image—not us.

...okay, I know how that sounds. Maybe you're mildly pan-
icking. Maybe you're more-than-mildly panicking! After all,
we're the designers! We should have the final say in which
images our users see, right?

But really: don’t worry. This lack of control is actually a
good thing. Consider that these images aren’t just chosen for
which has the best “fit” for our layout: an image from srcset

IMAGES AND VIDEOS 77



could be selected to match the speed of the user’s network,
the resolution of her display—or, or, or. There are countless
factors that determine which image is the best pick. And while
some things in our responsive images toolkit allow us a higher
degree of control, determining the best resolution for our image
is best left to the browser. It'll keep our markup lighter, and
our users happier.

While we can’t choose the best option out of srcset, we can
help the browser make a more intelligent selection. To do that,
we'll add a sizes attribute:

<img srcset="img/main-large.jpg 1440w,

img/main-medium.jpg 720w,

img/main-small.jpg 360w"
sizes="(min-width: 5@em) 250px,
(min-width: 35em) 33vuw,

1eevw"
src="img/main-medium.jpg" alt="A friendly-looking
dog" />

So again, I realize that (min-width: s5eem) 25apx,
(min-width: 35em) 33vw, 1eevw looks a lot like unadulter-
ated, robot-generated gobbledygook. But as with srcset, we're
creating a list of items our browser, each separated by a comma.
Basically, each entry in our list describes the physical width of
our image at different points in our responsive design—that is
to say, the size it will occupy in the layout.

Let’s walk through our sizes attribute, and see if we can’t
decipher it:

1. (min-width: seem) 25@px looks a little like a media query,
doesn’t it? In fact, that’s basically what it is: we're telling the
browser that if the viewport has a minimum width of seem,
the image will be 25epx wide.

2. (min-width: 35em) 33vw works basically the same way:
if the viewport has a minimum width of 35em, the image
will be 33vw in width. But what’s a vw, you ask? Well, a vw is
just another unit of length in CSS, equal to 1% of the view-

78 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

port’s width. So 33vw is another way of saying the image will
occupy 33% of the width of the viewport.

3. 100vw is the default value for the sizes attribute. It means
the image will occupy the full width of the viewport. So if
the condition in our first sizes entry isn’t met—that is, if our
viewport is below that min-width: 4eem threshold—then
our image will be sized at 100% of the viewport’s width.

The sizes listed in our, um, sizes attribute don’t need to
perfectly match the image’s size at each breakpoint. What we're
trying to capture is an approximation of the image’s width as
the layout changes. Once it’s armed with information about
how an image will be laid out, the browser can intelligently
select an image from our srcset list and pick the best possible
option to load.

(Quick tip: if you're a fan of valid HTML, the sizes attribute
is actually required by the specification. In other words, if you
use srcset, it should be accompanied by a corresponding
sizes. At the time of this writing, srcset will still work without
sizes, but it’ll make your markup invalid. So tread carefully.)

A note about support, before we continue:

- A number of non-desktop browsers offer fair support for
srcset and sizes, On both i0S and Mac OS X, Safari has
partial support for the two attributes. It supports resolu-
tion switching with the x descriptor, but not with w. Newer
default browsers for Android—including Chrome and the
default Android browser—support the attributes handily.

However, it’s not all good news: neither Android’s default
browser (as of Android 4.4.4) nor Opera Mini (as of version
8, at least) support srcset or sizes. Nor do they natively
support any other part of the responsive images specifica-
tion—and that’s unfortunate for us, as both of these browsers
are massively popular.

. In happier news, support for srcset and sizes is fairly
robust among most modern desktop browsers. Chrome, for
example, has supported srcset and sizes since version 38,
while Opera has supported it since version 26. At the time of
this writing, Firefox is still finalizing its implementation of

IMAGES AND VIDEOS

79




<rcset and sizes, but allows you to activate the attributes
if you root around in the developer preferences. And while
Internet Explorer hasn’t shipped a working version, it is
actively working on support for the new attributes (http://
bkaprt.com/rdpp/03-21/).

Overall, the support for responsive images is impressive,
but still in its infancy—a significant number of browsers don’t
yet support srcset or sizes natively. However, you can use
a JavaScript library like Picturefill (http://bkaprt.com/rdpp/03-
22/) to patch responsive image support into older browsers.
Simply download Picturefill into your project, and include the
following in the head of your document:

<script>document. createElement( “picture" );</script>
<script src="/path/to/picturefill.js" async></script>

And with that, you'll have responsive images working seam-
lessly in your flexible layouts, responsibly resizing with a little
help from srcset and sizes.

But watch your step, dear reader: while srcset and sizes
can make CSS-resized images a little more weight-conscious,
sometimes scaling an image with CSS isn’t ideal. In some cases,
flexible images can harm more than they help.

When resizing brings regret

..okay, I apologize for the dire note. There’s nothing wrong
with a little max-width: 1@e%to make your img elements more
flexible—and what’s more, it’'ll work perfectly for most of your
images. But sometimes, simply scaling images up or down can
reduce their clarity.

Here's a quick example: open “What is Paul Krugman Afraid
Of?” (http://bkaprt.com/rdpp/03-23/) on a reasonably large
screen, say, a laptop or a tablet. Throughout the interview,
you'll notice several photos with text overlaid on them (FiG
3.15). Now, there are a number of potential accessibility issues

80 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

“Producing artificial intelligence that
©an cope with the real world is a much
harder problem than people realize"

Ezre Klein: &

FIG 3.15: Vox features quite lovely visual pull quotes, with text overlaid atop images.

in typesetting pull quotes in images—they’d need alt attributes
to be accessible to non-sighted readers—but let’s put those aside
for a moment, and focus on the responsive layout alone.

Since the article’s layout is responsive, Vox used max-width:
100% to ensure that as their flexible grid reshapes itself, the
images never break out of their containing elements. Because
of that, opening the same article on a smaller screen resizes the
images, but the pull quotes are considerably less legible than on
wider screens (FIG 3.16).

This is equally true on complex images and charts, if not
more so. For example, take the map near the top of this page
on Columbia’s School of Engineering site (http://bkaprt.com/
rdpp/03-24/; FiG 3.17). In addition to the colored blocks rep-
resenting energy consumption across New York City neigh-
borhoods, there’s the title of the graph, a legend to help you
decipher the map, pie charts for specific land areas, and so
on. The image is, in other words, incredibly dense. So while
it could be resized, all of those finer details would be lost, and
the meaning of the image would degrade.

IMAGES AND VIDEOS 81




public has no idea of how much

we depend upon this pretty much

invisible line of defense that is

looking pretty shabby these days.

Ezra Klein: Afear|hear
about a lot lately is the idea that

we'll build a self-improving

artificial intelligence that will

_a G~ PP | —

Fic 3.16: On smaller screens, simply resizing the images makes their text hard to read.
Flexible, but frustrating.

| seerer | {
|
| | Dt Fequor 8 ko of hom Lttt wirstratnure e ety pies 0nAd Eihe. |

‘ |
| it . — 1

FIG 3.17: A useful and interactive map of New York. Is there a way to effectively resize
something this dense?

82 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

The form, frame, and shape of our images

The problem with CSS-based resizing is that it’s content-blind: it
focuses on the shape of the container that holds the image, not
the image itself. And sometimes, if we're not paying attention,
those images can be resized past the point of usefulness.

This isn’t a new problem. Long before the advent of the web,
photographers and graphic designers have been concerned with
resizing their work effectively, and how to preserve the integ-
rity of their artwork across differently-sized media. In the mid-
dle of the twentieth century, the Swiss designer Karl Gerstner
applied a systematic approach to the problem, demonstrating
how a design system could be used to adapt a wordmark so that
it doesn’t just fit in different paper formats, it thrives (FiG 3.18).

More recently, designer Raymond Brigleb charted the rise
of the cassette tape’s popularity in the "8os and the challenge
it posed for the designers of LP album covers. Constrained by
the cassette’s smaller size and unforgivingly weird aspect ratio,
designers changed the layout, size, and position of key elements
to preserve the message they wanted to convey (FiG 3.19).

Even the process of cropping a photograph relies on under-
standing the contents of the picture, not simply its dimen-
sions. A photographer identifies the primary subject of a pho-
tograph—the focal point—and trims away the inessential parts
of the picture. Various crops of a photograph may differ greatly
in the amount of detail shown, but the subject is usually con-
sistent. As different as they might look, all of the crops are, in
essence, the same photo (FiG 3.20).

In looking at the problem of making our images not just
resize, but respond, there have been some attempts to automate
intelligent image cropping. For example, Adam Bradley built a
framework that allowed designers to apply CSS classes to an
image’s container that would, in turn, preserve the focal point
as the image scaled up or down (http://bkaprt.com/rdpp/03-25/).

So it’s absolutely possible—and often ideal—to simply resize
your images with a mixture of max-width: 1ee%, srcset,
and sizes. But it’s worth remembering that the images inside
our documents are actually documents themselves. After all,

IMAGES AND VIDEOS

83




L 2 boite__a|

- ik == 3 musique

-y - musique
boite a -
mUSique musique

FIG 3.18: In his book Designing Programmes, Karl Gerstner demonstrated how a well-
thought-out design system could maintain a loga's integrity on any number of printed
formats, from full-sized advertisements to handheld gift cards (http://bkaprt.com/

rdpp/03-26/).

they’re there to convey information to our readers, so we
should ensure the message survives at any scale.

FINER-GRAINED CONTROL:
PICTURE AND SOURCE

In other words, you might come across situations when images
shouldn’t be resized, but replaced—swapped for alternate files
optimized for different breakpoints, ensuring that they main-
tain clarity even as their containers expand and contract. When
that happens, you’ll want to specify a completely different
image to load.

S0 B O D @ me—
¢ e—— ues0a®Pu
| o The Cassette Tape as =
Responsive Design

1 i FIG 3.19: In reviewing how album cover

| art had to adapt across LPs and cassettes,
| Raymond Brigleb demonstrates the need

: for responsive images (http://bkaprt.com/
| rdpp/o3-27/). (And suggests, | think, that

. our problems on the web aren’t entirely
|

|

|

|

|

|

new.)

FIG 3.20: While the dimensions of a photograph may change from crop to crop, the focal
point remains intact. Photograph by Tim Evanson (http://bkaprt.com/rdpp/03-28/).

Of course, that’s just for background images. Inline images,
such as those specified by our industrious ing element, need
some extra help. And that’s where the new picture element
comes in. As it happens, Shopify’s responsive site has a great
example of picture in action. Near the top of their homepage
is a photo of a Shopify customer, which is repositioned at dif-
ferent breakpoints (FiG 3.21). But if you look under the hood,
you’ll see that it’s not one photo, but three—each sized and
cropped slightly differently from the others (FiG 3.22). And if

84 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

IMAGES AND VIDEOS 85




Shopify is everything you
need to scll anywhere

FIG 3.21: Follow the photo: the lead picture on Shopify's responsive homepage is
repositioned at different breakpoints (http://bkaprt.com/rdpp/03-25/).

homepage-person@desktop.png homepage-person@tablet.png homepage-person@mobile.png

FIG 3.22: It might look like one image, but it's actually three: each photo features the same
subject, but with a slightly different crop.

you look at the page’s source, you'll see our first example of the
picture element:

<picture>
<source
srcset="homepage-person@desktop.png”
media="(min-width: 99@px)">
<source
srcset="homepage-person@tablet.png”
media="(min-width: 75@px)">
<img
srcset="homepage-person@mobile.png"”
alt="A featured Shopify Merchant">
</picture>

86 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

I've simplified their markup slightly, but the structure’s the
same. As you can see, a picture element contains any number
of source elements, and exactly one img. On each source,
there’s a media query inside the oh-so-aptly named media attri-
bute. The browser loops through each of the source elements
until it finds one whose media query matches the conditions
in the browser. Upon finding a match, it will send that source’s
srcset to the img element and load it.

And that relationship between the source and the img is
actually quite important: the matching source is never rendered
by the browser. In fact, neither is the picture element: the
srcset of the relevant source element is sent to the innermost
img, and that’s what gets displayed. So on widescreen displays,
the source with (min-width: 99epx) will send the largest ver-
sion of Shopify’s lead photo to the img; on midsize breakpoints,
homepage-person@tablet.png will get rendered, thanks to the
(min-width: 75epx) query. And finally, if none of the media
queries match, the browser will just load the img.

Instead of using srcset and sizes to load bigger and smaller
versions of the same image, picture allows us to tailor our
image content to fit specific viewports. In the language of the
responsive images specification, this is referred to as art direc-
tion. Rather than simply resizing the image, we're cropping or
otherwise optimizing it to fit a specific breakpoint. In doing so,
we're ensuring that it still conveys its meaning, even though the
details inside the image may change.

But swapping in different crops of images isn’t all the
picture element can do. In fact, take a quick look at http://
responsivewebdesign.com/workshop. Halfway down the page,
you'll see a list of logos (FiG 3.23). If you peek under the hood,
each of those logos look something like this:

<picture>
<source srcset="/logos/cibc.svg"
type="image/svg+xml" />
<img src="/logos/cibc.png" alt="CIBC" />
</picture>

IMAGES AND VIDEQOS

87




L e e o

€

+ g mmsteg oo

m

uc 400

PLANNING YOUR
woRKsHop WHO WE'VE WORKED WITH
w”u = ;B’__(; ﬁ.Expedia- o Narrioft

WELLS "
RBES  payPal

Seattle Children's

FIG 3.23: A little list of logos, powered by picture.

You might have noticed our picture element is completely
lacking in media queries. Instead, there’s a single type attri-
bute on the source, indicating that the image it references is
actually a vector-based SVG file (image/svg+xml). So instead
of using media queries to select an image, our browser is actu-
ally checking our sources to see if it supports their individual
types. In this particular case, we're looking for SVG support: if
a browser supports that image/svg+xml format, then it’ll load
the vector-based version of the image; but if it doesn’t, it’ll just
load the PNG specified in our img.

In theory, we could extend this further, enhancing our
srcset with some of those resolution-sensitive w or x flags
we discussed earlier. This type-based switching allows us to
use the picture element to ask a browser which file formats it
supports. And it gets considerably more powerful when
coupled with media queries, as you'll see if you look at the
logo at the top of the Responsive Web Design site (http://
responsivewebdesign.com/workshop):

88 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES

<picture>
<source
media="(min-width: 5@em)"
type="image/svg+xml"
srcset="/img/logo-rwd-sq.svg" />
<source
media="(min-width: S@em)"
srcset="/img/logo-rwd-sq.png" />
<source
media="(min-width: 39em)"
type="image/svg+xml"
srcset="/img/logo-rwd.svg" />
<source
media="(min-width: 39em)"
srcset="/img/logo-rwd.png" />
<source
type="image/svg+xml"
srcset="/img/logo-rwd-sq.svg" />
<img src="/img/logo-rwd-sq.png" alt="Responsive
Web Design" />
</picture>

Here we're combining media queries on each source with
a type attribute, allowing us to query not just the width of
the viewport, but whether or not the browser also supports
SVG (type="image/svg+xml"). And we’re doing so at multiple
breakpoints. At the widest ((min-width: 5eem)) and smallest
ends of the masthead’s layout, we’re looking to load a two-line
version of the image, either as a SVG (logo-rwd. svg) or PNG
(logo-rwd.svg). But at the middle breakpoint ((min-width:

39em)), the wordmark’s laid out in a single line; and once again,
we're using type-based switching to test for SVG support.

All that extra code might look complex, but the process is
still the same: our browser is going to start at the top of our
sources, and work its way down, searching for a source whose
media query matches the viewport and whose type attribute
matches the image formats supported by the browser. Once it
finds a match, it'll send that srcset to the img to be rendered;
if there aren’t any matches, then it’ll just load our img. ,

IMAGES AND VIDEOS

89



DESIGNER, FRAME THYSELF

We've looked at an incredibly broad array of techniques in this
chapter. But in many ways, we're being asked to balance our
designerly need for control—using backgro und-position and
background-size in our CSS, or picture in our markup—with
the browser’s ability to solve some of these image problems for
us with srcset and sizes. More than any coding technique,
that feels like the biggest challenge: to reframe the discussion to
focus not on a specific technology, but on relinquishing perfect
control over the experience.

90 RESPONSIVE DESIGN: PATTERNS AND PRINCIPLES




