46 RESPONSIBLE RESPONSIVE DESIGN

GIVEN THE DIVERSE NATURE of browsers today, the ability to
detect browser features and constraints is vital to delivering an
appropriate user experience. We have many ways to approach
this detection, some more responsible than others.

DEVICE DETECTION: THE EVOLUTION
OF A STOPGAP

Among topics of great debate in web development, perhaps the
most contentious is the practice of device detection. Its mere
mention in a gathering of peers gets my stomach tingling in
anticipation of the fiery opinions that await. In truth, a little de-
vice detection is sometimes necessary in a complex cross-device
codebase, but with each site I build, I find fewer reasons to use it.

This is a good thing, as any approach that includes device-
specific logic risks threatening the sustainability of our codebase
in the long term. Let’s explore some reasons why that is.

SUSTAINABLE DETECTION 47

Detecting all the things

When a user first requests a page, we know precious little about
their browsing environment. We don’t know the size of their
device’s screen, or if their device even has a screen. We don’t
know their browser’s capabilities. Fortunately, we can detect
these qualities after delivering code to the browser, but in some
cases that’s later than we'd prefer.

One thing we can universally detect upon first arrival is a
browser’s user agent information, included in every request
that a browser—or user agent—makes. This string of text packs
a variety of information, including the browser’s make and ver-
sion, like Firefox 14 or Chrome 25, and its operating system,
like Apple iOS. Crafty developers realized early on that if they
gathered data about various browsers and their capabilities
and stored them on their server (in what’s known as a device
database), they could query that information when a user visits
their site to get a good idea of the sort of browser they’re dealing
with. This process is called user agent sniffing or, more broadly,
device detection.

Sniffing up the wrong tree

Perhaps the most common criticism of user agent sniffing is
that the information a browser provides isn’t always reliable.
Browsers, networks, and even users sometimes modify user
agent information for myriad reasons, which makes it difficult to
know if you're dealing with the browser you think you are. Let’s
start with a few popular mobile browsers’ preference panels:
Android’s default browser, Opera Mini, the BlackBerry browser,
and others provide an easy means of changing the name the
browser reports itself as. You'll sometimes see this disguised
as “Request desktop site” or with more granular settings like
those in the Android browser, but the ability to change user
agent information exists to give users the tools to fight against
sites that deliver limited content and functionality to particular
browsers (FiG 2.1).

Similarly, a browser’s default user agent string is crowded
with mentions of other browsers in hopes that they will prevent

48 RESPONSIBLE RESPONSIVE DESIGN

[ty gl S O i e e =

Qs Yo B — Ba || o L]
n !

FIG 2.1: Android, Opera, and Firefox user agent settings.

PODOE

its users from being locked out of the best versions of certain
sites. For example, in addition to several appropriate bits of
information, the UA string of my current browser (Chrome
34) mentions Mozilla, Webkit, KHTML, Gecko, and Safari—all
terms describing non-Chrome browsers:

Mozilla/5.0 (Macintosh; Intel Mac 0S X 1@_8_5)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/34.0.1847.131 Safari/537.36

Some browsers go even further and deliberately obscure
information in their user agent string to trick sites into sending
them the experience other browsers get! The user agent string
for the vastly improved Internet Explorer 11 never mentions
Internet Explorer; instead, it tries to trick device-detection li-
braries into thinking the browser is Firefox or Webkit, which
developers came to recognize as the only browsers that sup-
port advanced features necessary to deliver a better experi-
ence. (In recent versions of IE, this is thankfully no longer
true.) In her A List Apart article “Testing Websites in Game
Console Browsers,” Anna Debenham notes a similar situation
with the Sony PlayStation Vita’s browser: “The Vita’s browser is
a WebKit-based version of NetFront. Strangely, it identifies itself
as Silk in its user agent string, which is the browser for Amazon’s
Kindle Fire” (http://bkaprt.com/rrd/2-01/) (FiG 2.2).

Browser developers have an interest in ensuring the sur-
vival of their software. Ironically, the more web developers
deliver their content and features unevenly based on user agent

SUSTAINABLE DETECTION 49

FIG 2.2: Messy device detection results across mobile devices (http://bkaprt.com/rrd/2-02/).

information, the less meaningful user agent information will
continue to be.

“Set it and forget it?” Forget it!

But reliability is a minor problem compared to sustainabi!ity.
We can only write detection logic against browsers and devices
that exist now, which makes device detection utterly useless for
gracefully accepting new browsers. ‘ .

Most critically, relying too heavily on device df.:tecnon can
lead us to make dangerous assumptions based on }nformatlon
that’s not always up to date. Device detection prov‘ldes, at bes?,
stock information about a device or browser, meaning any opti-
mizations we make based on that static data may not reflect the
live, dynamic nature of a user’s actual browsing eneronment.

These are some examples of variables that a device database

can never accurately convey (FIG. 2.3):

50

RESPONSIBLE RESPONSIVE DESIGN

Viewport size

Orientation

Browser settings:

D Allow GPS Location

‘. 9

Feature preferences Input modes

FIG 2.3: Assumptions to avoid based on a device’s user agent string.
p g j:4

- Viewport size. While a device database may return some-
what reliable information about a device’s screen, screen size
often differs from a browser’s viewport size. For responsive
layouts, it’s the viewport size we care about. We should also
avoid assuming anything about a user’s connection speed
based on screen size—smartphones are commonly used over
fast Wi-Fi connections, while laptops and tablets can be teth-
ered to a slow cell network—or worse: bus Wi-Fi.

+ Device orientation. Those viewport considerations are twice
as difficult when you consider display differences between
portrait and landscape (Fic 2.4). Even if we know the dimen-
sions of a screen, we have no way of knowing (on the server
side) the device’s orientation. We need to ship CSS that ac-
commodates viewport variability.

- Font size. The common practice of using em-based units for
media queries means that users’ preferred default font size
determines the layout they get, so a browser on a laptop with
a large font size may need a smartphone-ish layout. (As we’ll
discuss in a bit, CSS media queries handle this naturally.)

Font size

SUSTAINABLE DETECTION 51

- Custom preferences. People commonly override their
: browser defaults and turn off features on their phones. A
The Busion Slobe — browser may support a feature, but a server has no way of

W ngE

knowing whether that feature has been disabled by the user.
Input modes. Device databases can often tell us if a device
has a touch screen. But as you may recall, just because a de-
: [: vice has a touch screen doesn’t mean that it supports touch
; Ui Boswon Blobe - - ~ events, or that touch is the only input mechanism the device
e 2 T s : : offers (FI6 2.5). And of course, touch support is now built
A - ' into devices that have large screens as well, such as Google’s
Chromebook laptop, so it’s unsafe to infer any sort of rela-
tionship between touch support and screen size.

So when we build cross-device experiences, we want to be
mindful of these factors and be wary of assumptions based on
stock device conditions. Device detection is a risky bet, and it’s
only going to get riskier.

o | GOOD NEWS: WE'RE IN CONTROL

- W T T

sl RS

FIG 2.4: The Boston Globe website shown in two screen orientations on the same device.

The move away from browser-specific code has been long and
slow, but support and tools for making sustainable, feature- and
condition-based decisions have dramatically improved in recent
years, and they get better every day. Client-side technology
like HTML, CSS, and JavaScript allows us to see what’s actually
happening in that dynamic browser environment and to make
decisions that are more contextual and appropriate. In a word:
responsible.

Features and constraints, not devices

“An over-emphasis on context can focus design solutions too much
on assumed mobile situations instead of on the true richness of
mobile web use happening today.”

—LUKE WROBLEWSKI, http://bkaprt.com/rrd/2-03/

FIG 2.5: An Android 2.3 device with multiple input mechanisms.

One crutch we'd do well to abandon is the assumption that
device form-factors are exclusively tied to specific browser

52 RESPONSIBLE RESPONSIVE DESIGN SUSTAINABLE DETECTION 53

features or network conditions. In reality, these features rou-
tinely overlap across common device categories.

“Touch and viewport size aren’t connected. The most popular touch
devices may currently be phones and tablets, but you can also find
touch screen offerings for 27" monitors and beyond.”

—TRENT WALTON, “Type & Touch” (http://bkaprt.com/rrd/2-04/)

Once-convenient mobile and desktop categories have lost any
meaning for our work. We sometimes hear “mobile” to describe
a device’s roving physical context, yet vast amounts of smart-
phone and tablet use happen while people are at home on their
couch. We may think of mobile as a connection-speed limitation,
yet devices of all kinds are as likely to be tethered to high-speed
Wi-Fi as they are to a high-latency cell tower (FiG 2.6). And we
may take mobile to mean devices with features like a smaller
screen size and an ability to react to touch, or constraints like
poor rendering capabilities, but each day devices are released
that break free from the neat categorizations we try to impose.

Attempting to classify devices and browsers by form factor
alone distracts us from the parameters that are actually impor-
tant when we design for the web: features (like CSS properties
and JavaScript APIs) and constraints (like viewport size, unpre-
dictable connectivity, or off-line use). Designing for features and
constraints allows us to see how patterns that may otherwise
seem distinct are shared across devices, and to build in a modu-
lar manner to create unique experiences that feel appropriate
to each device.

Querying media responsibly

Perhaps the most memorable tenet from Ethan Marcotte’s origi-
nal responsive design workflow is CSS3 media queries, the con-
ditional CSS statements we use to deliver styles to some contexts
and not others. Marcotte’s initial article used media queries in
a desktop-first manner, which means that we build the largest
layout first and use media queries to override that layout all the
way down to a small screen.

54 RESPONSIBLE RESPONSIVE DESIGN

Warp speed g
mobile broadban

Make the most of now

FIG 2.6: Wi-F.i not guaranteed: an ad for a USB dongle that enables web access over a SIM
card on mobile networks. Photograph by Frankie Roberto (http://bkaprt.com/rrd/2-05/).

Shifting the responsive direction

Toward the end of his book Responsive Web Design, Marcotte
remarked that shifting our media queries to follow a mobile-
first, or small-screen-first, philosophy would give our users a
more responsible, sustainable experience. To paraphrase Luke
Wroblewski, a mobile-first workflow helps us to prioritize con-
tent, since there’s not enough room on a small screen for non-
critical content. Thinking mobile-first also pairs nicely with the
mindset of progressive enhancement, aka starting small and
layering in more complex layout as space permits.

“The absence of support for @media queries is in fact the first
@media query.”

—BRYAN RIEGER, http:/bkaprt.com/rrd/2-06/

A mobile-first responsive stylesheet begins with styles that
are shared across all experiences, forming the foundation of the
smallest screen layout. These styles are followed by a series of
mostly min-width media queries to scale that layout up to greater

viewport sizes and pixel depths. At a high level, the CSS looks
something like this:

SUSTAINABLE DETECTION §§

/* styles for small viewports here */
.logo {

width: 56%;

float: left;

}
.nav {
width: 50%;
float: right;
}

@media (min-width: 5@em) {
/* styles for viewport widths 5@em and up here */

@media (min-width: 65em) {
/* styles for viewports 65em and up here */

What about max?

When building mobile first, max-width queries are still quite
helpful. For example, if a design variation only occurs within a
certain width range, that’s a great candidate for max-width. You
can combine min and max to isolate styles from CSS inheritance
at bigger breakpoints, making for smaller, simpler CSS:

@media (min-width: 5@em) {

.header {
position: static;
}
|
@media (min-width: S54em) and (max-width: 65em) {
.header {
position: relative;

56 RESPONSIBLE RESPONSIVE DESIGN

@media (min-width: 65em) {

/* .header is static positioned here */

What's with those ems, anyway?

You may have noticed that in addition to shifting the respon-
sive direction, the breakpoint widths above use em units rather
than pixels. Ems are flexible units that are sized relative to an
element’s container in a layout. By using ems, we can design
responsive breakpoints proportionally to our fluid, scalable
content, which also tends to be designed with scalable units
like em and %.

Converting pixel breakpoints to ems is easy: divide the pixel-
based value by 16, the default equivalent size of 1em in most web
browsers:

TR T SR G Y

}
@media (min-width: Seem){ /* 8@@px / 16px */

If em breakpoints aren’t your bag, pixels can work fine—I
just prefer to use proportional units across a layout. The more
important thing is to avoid basing breakpoints on device widths
and instead focus on breakpoints that are appropriate to your
site’s content. For more information on em media queries, check
out Lyza Gardner’s article “The EMs have it: Proportional Media
Queries FTW!” (http://bkaprt.com/rrd/2-07/).

Broadly qualifying CSS application

Not every mobile browser supports the CSS we rely on, like
floats, positioning, or animation. If your styles for a small-
screen experience are significantly complex, you might consider

SUSTAINABLE DETECTION §7

broadly qualifying their application to newer, media-query-sup-
porting browsers. Wrapping the mobile-first styles in a media
query such as only all is one reliable way to do this. Though
a bit confusing to look at, the only all query applies in any
browser that supports CSS3 media queries. While all is a CSS
media type that refers to any browser that supports CSS 1.0, the
only prefix requires media query support to understand—which
means that its defined styles are recognized by modern brows- [PGSR
ers. Here’s how our mobile-first stylesheet looks when qualified)

*i: BlackBerry
FIG 2.7: The basic experience of the

The Boston Globe || ziceeermie

Weather: 53¢ Partly Sunny Weather Commute

Saarch: Ce

for media-query-supporting browsers: f —
£ MNews Metro Business Spors Ards

@media only all {
/* styles for qualified small viewports here */

@media (min-width: S@em) {
/* styles for viewport widths 5@em and up here */

@media (min-width: 65em) {
/* styles for viewports 65em and up here */

}
Retaining some style in basic browsers ;
d
To maintain some level of branded experience in browsers that font-color: #a@e;
don’t support media queries, I find it useful to tease out a small }
amount of the safer styles from your first CSS breakpoint and section {
place them before the only all media query so they apply margin: lem;
everyvvhere. border-bottom: 1px solid #aaa;
Safe styles—like font-weight, margin, padding, border, 7
line-height, text-align, and more—can be sent to any brows-
er without introducing problems (Fic 2.7). @media only all {
/* styles for qualified small viewports here */
/* styles for small viewports here */ }
body { /* more... */
font-family: sans-serif;
margin: @; A quick (responsible) reminder: if you choose to deliver styles
h to basic browsers, be sure to test them!

58 RESPONSIBLE RESPONSIVE DESIGN SUSTAINABLE DETECTION §9

Bullet-proofing the viewport

Traditionally (if such a term can be used for this stuff) in respon-
sive layouts, we've used a meta element to specify the width that
browsers should use to render a page when it first loads, such
as the popular width=device-width declaration:

<meta name="viewport" content="width=device-width; »

initial-scale=1">

This approach has worked fine for us so far, but it’s not par-
ticularly sustainable: for starters, the W3C never standardized it;
what’s more, meta elements are a strange place to define a visual
style. Thankfully, the W3C has standardized an approach to
specifying viewport style information such as width and scale,
and it’s handled via CSS instead of HTML. To ensure that our
viewport settings continue to work in future browser versions,
we want to include these rules in our CSS:

@-webkit-viewport{width:device-width}
@-moz-viewport{width:device-width}
@-ms-viewport{width:device-width}
@-o0-viewport{width:device-width}
@viewport{width:device-width}

For browsers that don’t support @viewport, we should con-
tinue to include the meta viewport element. Trent Walton wrote
a handy post about this, and includes tips for getting our respon-
sive sites to work well with IE10’s “snap mode” on Windows
8 (http://bkaprt.com/rrd/2-08/). (Unsurprising spoiler: getting
things up to speed in IE10 requires more than the code above.)

Querying other media

Querying the width and height of a viewport with min-width
and max-width goes a long way toward producing a usable

60 RESPONSIBLE RESPONSIVE DESIGN

layout, but there are many more conditions we can test to layer
enhancements contextually. For instance, to deliver higher-dpi
images to HD screens of 1.5x resolution and up, we can use a
min-resolution media query of 144dpi (twice that of standard
72dpi). To cover some existing browsers currently transitioning
to the standard syntax, we can also include a WebKit-prefixed
fallback property (-webkit-min-device-pixel-ratio) in our
query:

@media (-webkit-min-device-pixel-ratio: 1.5),
(min-resolution: 144dpi) {

/

/* Styles for HD screens here */

In the near future, media queries will support several
more interesting features, such as detecting whether touch-
or hover-based input mechanisms are supported via @media
(pointer:fine) {...}and @media (hover) {...}, detecting
JavaScript support via @media (script){ }, and even
detecting ambient light with luminosity. To track their imple-
mentation status, keep an eye on Can I use... (http://bkaprt.com/
rrd/2-09/), and for some great articles describing the “good and
bad” of Level 4 media queries, see Stu Cox’s article of that name
(http://bkaprt.com/rrd/2-10/).

DETECTING FEATURES WITH JAVASCRIPT

As new features arrive in browsers, we often need to qualify
their use at a more granular level. JavaScript feature detection
has long been a part of web development, thanks to proprietary
feature differences in early browsers. Back then and (to a lesser
degree) to this day, to get code to work in more than one browser
it was necessary to check whether even the most common func-
tions were defined before using them. For example, if we wanted
to listen for an event like click, we would first need to check
which event API the browser supported:

SUSTAINABLE DETECTION

61

// if standard event listeners are supported I ARTICLES - TOPICS . ABOUT . CONTACT . CONTRIBUTE . FEED
if(document.addEventListener){ .
carch AL
: " 0 " SEPTEMBER 23,2008
document.addEventListener("click", myCallback, » 2Ree 5
falsa)i Test-Driven Progressive Enhancement inchude discussions
4 by SCOTT JEHL L
\ Topics
} o
g1 o Published In: Scripting
// if not, try the Internet Explorer attachEvent method | DS This AL Shar thB s Content »
- Culture »
else if(document.attachEvent){ Progressive enhancament has Design +
" . " . become an established best-practice Moblle »
document.attachEvent("onclick", myCallback); e b s S
} | development, By starting with clean, User Science »
semantic HTML, and layering
Snapshat

enhancements using JavaScript and i
€55, we attempt to create a usable

. . ‘ experience for everyone: less
Detectmg]'avaScrlpt features | sophisticated devices and brawsers

get a simpler but completely

testing into cur
development process
aliows us to take full

advantage of state-of-

Thankfully, in recent years the web standards movement has [N qe, e e
nudged browsers into supporting common APIs for features like whisles. sl
event handling, which greatly reduces the number of browser- , , Thar's the theary, ot least. Bt in i .

% . i | practice, enhancements are still
specific forks we must apply in our code and makes it more ; defvered to most devices, including

. . those that only partially understand Ad via The Deck
sustainable in the long term. | them-—specifically older brawsers

L) s . | and under featured mobile devices. JO8 BOARD
Now it’s more common to use JavaScript feature detection Vbersotifinceseices it R
to determine whether a feature is supported, before using that A e B
feature to create enhancements on top of an already functional ‘ into 2 mess of scripts and styles ABockapart
| gone awry, entirely defeating the purpose of the approach.

HTML experience. For example, the following JavaScript func-
tion detects whether the standard HTML canvas element (a sort

of artboard element that offers an API for drawing graphics with
JavaScript) is supported; FIG 2.8: My 2008 A List Apart article “Test-Driven Progressive Enhancement”
(http://bkaprt.com/rrd/2-11/).

So how do we build enhanced experiences while making sure all users get a
functional site? By testing a device’s capabiiities up front, we can make

|
|
|
|)
| informed decisions about the level of experience to deliver to that device.

function canvasSupported() {
var elem = document.createElement('canvas');

return !!(elem.getContext &% elem.getContext('2d‘)); Detecting 5SS fesitiiies

}

While detecting features in JavaScript isn’t new, using JavaScript
This could be used before loading and running a pile of to detect CSS feature support began relatively recently. I first
canvas-dependent code: used CSS feature detection this way in the examples for my
2008 A List Apart article “Test-Driven Progressive Enhancement,”
if(canvasSupported()){ which advocated the idea of running a series of diagnostic tests
// use canvas API safely herel on a browser before applying CSS and JavaScript enhancements

} to a page (FiG 2.8).

62 RESPONSIBLE RESPONSIVE DESIGN SUSTAINABLE DETECTION 63

At the time, new browsers included great new CSS capa-
bilities like float and position, even though browsers with
poor support for these features were widely used. This made
it difficult to apply modern CSS to a site without breaking the
experience for users running older browsers.

One example from the article was the following test to see if
a browser properly supports the standard CSS box model, which
incorporates padding, width, and border into the measured
dimensions of an element. At the time, two different box model
variations were actively supported across popular browsers, and
writing CSS against one model would cause layouts to break
in browsers (read: old versions of Internet Explorer) that sup-
ported the other.

function boxmodel(){
var newDiv = document.createElement('div');
document.body.appendChild(newDiv);
newDiv.style.width = '2@px’';
newDiv.style.padding = '1@px’;
var divWidth = newDiv.offsetWidth;
document.body.removeChild(newDiv);
return divWidth === 48;

¥

Let’s look at this more closely. The JavaScript function creates
anew div element, appends it to the body element in the docu-
ment, and gives the div some width and padding. The function
then returns a statement that the div’s rendered width should
equal 40. Those familiar with the standard CSS box model will
recall that the width and padding of an element contribute to
its calculated width on the screen, so this function tells you
whether the browser calculates that width as expected.

In the article, I bundled this test and others for properties
like float or position into a suite called enhance.js, which
could be run as a broad diagnostic during page load. If the test
passed, the script would add a class of enhanced to the HTML
element that could be used to qualify the application of advanced
CSS properties.

64 RESPONSIBLE RESPONSIVE DESIGN

“An indispensable tool.”
Bruce n, v, prody

| Modemizris a JavaScript library
that detects HTMLS and CSS3

Follow us on Twwer

features in the user’s browser. Contritnste on. GiHob:
| S
| Why use Modernizr? Subscribe with RSS
s Donate to Moderriar

s great fun, until you have o 3upPOr browsers

| tmatiog behind Maderizs makes i eosy for you
10 write concibonat JavaScrmt ond CSS 1o
handle each stuation, whether a browser

| supports o festure or not. K's perdect for doing

| progressive ennancement casdy.

Get started with Modernizr Latest news
While Modernizr gives you finer contral over the experionts through JIwiSernt
driven feature detection, & & important i contitue 1 urse best practices.
Wroghons your w "

herever you con, and dan sacrifice accessibiity for conveniente of
performance. PREVIOUS

Modanizr 3, Sticknrs 6 Diversity
News on v, stickers. and a
s tam

‘ How it works

| Modernizr rums quickty on page load to detect

| festures: & then creates a JrvaScript object with

| the resutts, and aods ciasses to the htal

| esement for you to key your CSS on. Modernar

| supparts dozens of tests. and optionaly
wackudes Yeohiop s for condional loading of

exernal Js and .css resources.

FIG 2.9: The Modernizr feature-testing framework.

.enhanced .main {
float: left;

Qualifying CSS in this way felt like a sustainable step for-
ward, but enhance. js was admittedly rough around the edges,
since it couldn’t detect and apply features at a granular level.
Fortunately, developers much smarter than myself picked up
the slack and took off running.

Feature detection frameworks

Almost any modern JavaScript framework uses feature tests
within its internal codebase, but one framework stands alone
in its mission to provide a standard approach to running tests
in our sites: Modernizr (http:/bkaprt.com/rrd/2-12/), created in
2009 by Paul Irish, Faruk Ates, Alex Sexton, Ryan Seddon, and
Alexander Farkas (FiG 2.9). Modernizr’s simple workflow of add-
ing specific classes to the html element to signify that a feature
like CSS multi-columns is supported (<html class="...css-
columns. ..">) makes the approach accessible to developers not

SUSTAINABLE DETECTION 65

versed in JavaScript detection intricacies, and has become a pseu-
do-standard approach to qualified application of enhancements.

Using Modernizr

Using Modernizr out of the box is quite straightforward. Include
themodernizr. js script in the head of an HTML document, and
the seript runs feature tests automatically.

<script src="js/modernizr.js"></script>

When Modernizr tests run, the framework retains a JavaScript
property, stored on the globally available Modernizr object, of
that test’s name that equals true if it passes or false if it doesn’t.

if(Modernizr.canvas){
// Canvas is supported!

}

When a test passes, Modernizr also adds a class of that test’s
name to the html element, which you can then use within your
CSS selectors to qualify the use of certain features. Quite a lot
easier than hand-coding those tests above, right?

While you can safely use many modern CSS features without
qualification—like box-shadow, border-radius, or transi-
tion—relying too heavily on these features can introduce us-
ability issues in browsers that don’t support them. For instance,
say you want to overlay text on an image. You want a text color
that matches the image and a text shadow to pull the characters
forward (FiG 2.10).

Limg-title {
color: #abb8c7;
text-shadow: .lem .lem .3em rgba{ @, @, @, .6);

}

In browsers without text-shadow support, the text is nearly
invisible (Fic 2.11)!

66 RESPONSIBLE RESPONSIVE DESIGN

FIG 2.10: Our intended design.

FIG 2.11: Our design as viewed in a
non-text-shadow-supporting browser.

To keep this from happening, you may choose to default
to a different presentation, perhaps using a color with higher
contrast first and then feature detection to enhance to the ideal
presentation.

.img-title {
color: #283e5b;

}
.textshadow .img-title {
color: #abb8c7;

text-shadow: .lem .lem .3em rgba(@, ©, 8, .6 ¥i

And voila! You have yourself an accessible experience in
browsers new and old (FiG 2.12-2.13).

SUSTAINABLE DETECTION 67

——

FIG 2.12: Default experience.

FIG 2.13: Enhanced experience.

Detecting CSS support without JavaScript

As useful as JavaScript-driven feature detection is, it comes
with the downside of loading and running code for no purpose
other than to qualify features we want to use. Ideally, we should
standardize the ways we detect features as we do the features
themselves; thanks to advocacy from developer Paul Irish, na-
tive support for a CSS feature-detection approach has been
standardized by the W3C and is gradually becoming available
in browsers.

The @supports feature (http:/bkaprt.com/rrd/2-13/) follows
a similar syntax to that of media queries. By passing any CSS
property and value pair (say, display: flex)to the @supports
rule, you can define entire style blocks to apply only in browsers
that implement that CSS feature (or features). Here’s an example:

@supports (display: flex) {
#content {
display: flex;
I

...more flexbox styles here

@supports is pretty handy: it offloads feature detection work
to the browser, removing the need for us to write custom—and
often slow, unreliable—tests to produce similar results. Less
work for developers, and better performance for users! In addi-
tion to the @supports syntax in CSS, you can pair a JavaScript
API called CSS.supports. Here’s an example of it in action,
qualifying the use of transition:

if(CSS.supports("(transition: none)")){
// CSS transitions are supported!
// Perhaps you'd add some transition event listeners
here. ..

Support for support

As is the nature of many CSS features, the @supports approach
to feature queries will gracefully degrade by itself, meaning you
can safely include it in a stylesheet. Browsers that don’t under-
stand @supports will ignore it and the styles it qualifies.

We can’t say the same of the JavaScript method that pairs
with @supports: funnily enough, before using the €SS.sup-
ports JavaScript API, you need to check if the browser sup-
ports CSS.supports! If you've been developing websites for
a while, you're probably used to this sort of thing. Somewhat
amazingly, though, two versions of CSS. supports already exist
in the wild because some versions of the Opera browser have a
non-standard implementation (window. supportscss). So here’s
asnippet that tries to assign a variable cssSupports to one or the
other, if available:

68 RESPONSIBLE RESPONSIVE DESIGN SUSTAINABLE DETECTION 69

var cssSupports = window.CSS && window.CSS.supports || »

window.supportsCss;

With this normalization in place, you can qualify your CSs.
supports use as follows:

if(cssSupports && cssSupports("(transition: none)" »

¥l

// C5S transitions are supported!

}

Now to play devil’s advocate for a moment: one potential is-
sue with native feature detection like @supports is that it places
trust in browsers to report honest results about their own imple-
mentation’s standards compliance. For example, the Android 2
browser supports history.pushState—used for changing the
browser’s URL location to reflect updates made in the page since
last load—but it doesn’t update the actual page address until you
refresh the page, making the implementation completely use-
less. From a web developer’s perspective, any variation from a
W3C spec in a browser’s implementation could deem a feature
unusable, so where do we draw the line for whether a feature is
supported or not? The spec suggests that support is defined by
a browser implementing a particular property and value “with
a usable level of support,” which, of course, is subjective (http://
bkaprt.com/rrd/2-14/). Given that in the past, browser vendors
have routinely adjusted their user agent strings to improve their
relevance among competitors, there’s also the potential for delib-
erately dishonest reporting. As for how accurately this detection
feature will continue to work, the future remains to be seen.

That leads us well into our next section.

UA detection: the best when all else fails

Sometimes, the question of whether a feature is supported is
more complicated than a simple yes or no.

Uneven browser support is particularly problematic when
it comes to talking about “the undetectables”: features that are
hard to detect across browsers through feature detection alone

70 RESPONSIBLE RESPONSIVE DESIGN

(http://bkaprt.com/rrd/2-15/). Scarily, a significant subset of these
undetectables can wreak havoc on the usability or accessibility
of content when they’re unsupported or, often worse, partially
supported. For example, Windows Phone 7 (running Internet
Explorer 9) supports @font-face for delivering custom fonts,
but only with fonts that are installed on the device—defeating
the purpose of the feature.

Many features are partially or improperly supported in brows-
ers. That presents a tedious challenge to responsible design: we
have no way of knowing whether those features are working
properly without testing the browser in question ourselves.

In situations where support for a technology you need is
uneven and undetectable, and the lack of (or partial) support can
create an undesirable effect, it may be a wise choice to employ
some browser-based (rather than feature-based) detection as a
fallback. It’s worth noting, yelling even, that user agent detec-
tion has serious drawbacks and tends to be very unsustainable.
Avoid it if you can. That said, it’s sometimes necessary. The
responsible approach is to do what we can to exhaust all poten-
tial means of browser-agnostic detection before resorting to the
user agent string. Here are a couple of examples incorporating
that last resort.

Desperately qualifying overflow

The CSS overflow property allows us to control what happens
when content overflows the boundaries of an element. Possible
values include visible (which visually displays the overflowed
content), hidden (which hides it), and scroll or auto (which
allows the user to scroll through the element’s content). For
example, the following CSS when applied to an element with a
class of .my-scrolling-region:

.my-scrolling-region {
border: 1px solid #@@e;
height: 2@0px;
width: 3@epx;
overflow: auto;

SUSTAINABLE DETECTION

71

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit. Duis feugiat
sem quis lorem porttitor
sagittis. Proin ultrices eros

FIG 2.14: An example of the C55
overflow property.

..produces FIG 2.14 in the browser, if the content happens to
exceed the height of the element.

Unfortunately, simple as it may sound, partial support for
overflow is prevalent on the web. For example, many mobile
browsers treat overflow: auto the same asoverflow: hidden,
which crops content without offering users any means of access-
ing it. What’s more, older versions of iOS require two fingers
to scroll an overflow region (which presumably few iOS users
even know to try).

These support shortcomings make overflow risky to use
without qualification, but to make matters worse, overflow
support is nearly impossible to detect! A test for whether the
overflow property is supported will pass even if it’s not sup-
ported properly, and trying to test for overflow: auto support
specifically requires user interaction to verify (i.e., we don’t
know for sure if scrolling works until the user tries it). Because
of this predicament, overflow is a good candidate for alittle user
agent detection (as a fallback). Overthrow (http://bkaprt.com/
rrd/2-16/) is a script that helps us use overflow safely; when the
script runs, it takes the following steps:

It first runs a feature test to try to detect whether overflow is
supported. This test will fail reliably in browsers that don’t sup-
port overflow, and pass in most modern browsers that correctly
support it. Unfortunately, though, the test also fails in several
browsers that are known to support overflow properly, requir-
ing a fallback approach to get those browsers on board. That
approach checks the browser’s user agent string to detect eight
or so browsers that are known to render overflow properly yet

72 RESPONSIBLE RESPONSIVE DESIGN

fail the feature test. The script assumes those specific browsers
will continue to support the feature in future versions as well (a
slightly risky assumption). In passing browsers, Overthrow adds
aclass of overthrow-enabled to the HTML element, which can
be used to qualify overflow within a stylesheet.

I want to reemphasize that we’ve attempted to use a brows-
er-agnostic means of detecting the feature before resorting to
device-specific logic. That part is critical, as we want to make
our code as future-ready and sustainable as we can. With that

class in place, we can qualify the element from above to safely
use overflow:

.overthrow-enabled .my-scrolling-region {
overflow: auto;
—webkitﬂover‘flowfscmlling: touch;
-ms-overflow-style: auto;
height: 2@@px;

}

The CSS shown here ensures that browsers that support
overflow get a scrolling pane with a specific height, while
others see the content in full without a set height that would
require scrolling, Best of all, if the test malfunctions or fails to
pass an overflow-supporting browser, the content will still be
accessible. In addition to the overflow and height, I've added
vendor-specific properties to apply momentum-based scrolling
in WebKit and IE10 touch-based environments. Fic 2.15 and

FIG 2.16 demonstrate supported versus unsupported environ-
ments—both perfectly usable.

Position: fixed? More like position: broken!

Another example of a dangerous undetectable is the CSS prop-
erty position:fixed. Many recently popular mobile browsers
(AlAndroid 2, Opera Mobile, older iOS versions) leave fixed-posi-
tioned content wherever it is at page load, meaning that content

continues to sit on top of the content beneath it, obscuring ac-
cess to the page (Fic 2.17).

SUSTAINABLE DETECTION 73

A tiny, no-frills, framework-independent, targeted

polyfill for use in responsive

design.

Disable Overthrow

Home What is this all about? What is Overthrow? Fealures Support
FIG 2.15: The Overthrow site in a browser that supports overflow.

Filamant Group

A tiny, no-frills, framework-independent, targeted

polyfill for use in responsive design.

What is this all about?

You want to use CSS overtlow in your designs, but overt 1ow doesn't work properly in

.ill Carrier = 1:08 PM

~SpoTy SUPPOT 4Cross 0avices. 1
assumes fixed-positioning works
initially, adding a class of fixed-
supported that can be used to qualify
any position:fixed rules, When the
page is scrolled, it runs a test to
determine if fixed-positioning is
working properly, if not, the class is
removed, allowing any fixed-posilioned
elements to safely degrade to some
other layout.

And now, some fake conlent lo allow
scrolling...

Pellentesque habitant morbi
tristique seneclus et netus et
malesuada fames ac turpis egestas.
Veslibulum tortor quam, teugiat vitae,
ultricies eget, tempor sit amet, ante

oo

-uil Carrier = 1:08 PM =
~UBETITINe M Xeu-posiomng s i

warking properly, if not, the class is
removed, allowing any fixed-positioned
elements to safely degrade to some
ather layoul.

And now, some fake content fo allow
scrolling...

Pellentesque habitant morbi
tristique seneclus et netus et
malesuada fames ac turpis egestas.
Veslibulum tortor quam, feugiat vitae,
ultricies eget, tempor sit amet, ante.
Danec eu libero sit amet quam egestas

Fixed to viewport bottom

pharetra. Vestibulum erat wisi,
condimentum sed, cornodo vitae,
ornare sit amel, wisi. Aenean
fermentum, elit eget tincidunt
condimentum, eros ipsum rutrum orci,

canitic inmrue lanie aniem am dii

FIG 2.17: Intended behavior (left) vs. buggy behavior (right) in a browser with poor

fixed-position support,

many browsers, particularly mobile ones. Many popular mobile browsers treat overf1ow:

auto the 8ame as overflow: hidden, Cropping overflow content from view, and leaving | . i .
users no way to access it To combat this, check out Fixed-Fixed (http:/bkaprt.com/
rrd/2-17/). Similarly to Overthrow, Fixed-Fixed employs a sim-
ple CSS class qualifier you can use in your selectors; it also,
like Overthrow, attempts to run a feature test before resorting
to user-agent-based fallback detection if necessary. Here’s an

example:

But wait - many browsers actually support ever£low very welll In particular, desktop
browsers tend to support it without a hitch, and many of the latest versions of most mobile
platforms do too. The trouble is, it's hard — perhaps impossible — to test for evertlow
support, and even if we could use it safely where supported, many popular browsers lack
that support and would be left with a degraded experience.

What is Overthrow? .fixed-supported #header {

. osition: fixed;
Overthrow is a conservative attempt at filling the gaps in overt 10w support, with an p 3
emnhasig nn lattina native imnlamantatinns dn their thina_and in touch-sunnorinn ! }

FIG 2.16: The Overthrow site in a browser that doesn't support overflow.

74 RESPONSIBLE RESPONSIVE DESIGN SUSTAINABLE DETECTION 7§

That’s about it! In qualified browsers, the #header element
is fixed to the top of the viewport; in others, it scrolls with the

page.

Supporting the unsupported

If a browser doesn’t support a particular feature, does that mean
we have no way to use it in that browser? Not necessarily. In
the past several years, the practice of emulating features in
unsupported browsers, known as shimming or polyfilling, has
become quite common. In fact, there’s a workaround listed on
the Modernizr site for almost every feature the library detects.
Shims tend to be quick hacks to enable a certain approach,
while polyfills are more involved. Let’s look at shims first.

Shims

Probably the most famous shim is the HTMLS shim, also called
the HTMLS shiv, perhaps due to web developers’ common dis-
dain for older versions of Internet Explorer (more here: http://
bkaprt.com/rrd/2-18/). IE versions older than 9 can’t apply CSS
styles to HTML elements that didn’t exist at the time of the
browser’s release date, meaning HITMLS elements like section
and header are unstyleable in one of the most widely used
browsers on the web. Fortunately, a JavaScript workaround
discovered by developer Sjoerd Visscher tricks IE into “learning”
about any element that’s generated with the method document.
createElement, enabling IE to style those elements like any
other. The workaround couldn’t be easier: create an element of
a given name using document . createElement, and all instances
of that element IE subsequently encounters will be recognized
as if natively supported, like magic.

Remy Sharp later created an open-source script (http://bkaprt.
com/rrd/2-19/), now maintained by Alexander Farkas and oth-
ers, that applies this workaround to the new HTMLS5 elements.

76 RESPONSIBLE RESPONSIVE DESIGN

—
£)5 Bin - Windows Intemet Explorer [|
s ,ﬁm _ S [ESSEoR
/) | 8] http/jsbincom/pt v | B | 45 | X || £ Bing P>
yr Favorites | @8 IS Bin W # N v Pagev Safety~ Toolsv @~
Website!
Done @ Intemet | Protected Mode: Off ‘v K10% ~

FIG 2.18: Unstyled, unrecognized HTML5 header element.

FIGURE 2.18 shows an example of HTMLS styling in IE8 without
the shim.

<IDOCTYPE HTML>
<html>
<head>
<style>
header {
font-size: 22px;
color: green;
}
</style>
</head>
<body>
<header>Website!</headers
</body>
</html>

SUSTAINABLE DETECTION 77

& J5 Bin - Windows Internet Explorer

O~ e

w Favorites

jsbincom/pc v | B [45| X

w # [N} v Pagev Safety~v Tools~ W~

&)5Bin

Done

Website!

3
@ Intemet | Protected Mode: Off 2~ RiS0% ~

FIG 2.19: Styled, shimmed HTML5 header element.

FIGURE 2.19 shows how it renders with the shim.

<!DOCTYPE HTML>
<html>
<head>
<l--[if 1t IE 9]>
¢<script src="html5shiv.js"></script>
<![endif]-->
<style>
header {
font-size: 22px;
color: green;
}
</style>
</head>
<body>»
<header>Website!</header>
</body>
</html>

78 RESPONSIBLE RESPONSIVE DESIGN

With regard to responsible development, there is a minor
but considerable downside to shimming HTML5 support: if the
JavaScript fails to load in older IE browsers, HTML5 elements
will not receive any CSS styles. This may not be a major problem
if the only style we're applying is some color, as in the example
above, but if a columnar page layout depends upon HTMLS ele-
ment styling, the page elements will crash together in IE, which
may hinder usability. To avoid this issue, it has become common
to wrap HTMLS elements in a div with a class of that element
name (<div class="article"s<article></article ></divy),
and style that div element instead. This bloats the markup a
little, but it does allow modern browsers to reap the semantic
benefits of HTMLS elements without needing a JavaScript work-
around to style the page.

Responsive design polyfills

The term polyfill was coined by Remy Sharp to describe an ap-
proach that Paul Irish sums up nicely as “a shim that mimics a
future API providing fallback functionality to older browsers”
(http://bkaprt.com/rrd/2-20/). A polyfill goes to some length to
reproduce a standardized API with JavaScript, and is typically
more than a quick-and-dirty workaround.

A responsible shim or polyfill should always try to discern
if a feature is supported natively before reproducing its API.
For performance reasons, a native implementation is always
preferred, so it’s also wise to consider whether the feature is
truly necessary to polyfill in the first place. Nine times out of
ten, it’s more responsible to serve unsupported browsers a less-
enhanced experience than to force ad hoc upgrades for features
they don’t support. The decision to use a polyfill should be based
on three main points: how much the feature improves your
audience’s user experience, the cost to performance of includ-
ing the polyfill in a page, and its ability to one day be removed
seamlessly from your codebase.

For responsive design, I commonly find a few polyfills helpful.

SUSTAINABLE DETECTION

79

MatchMedia: media queries in JavaScript

While media queries are mostly used for applying CSS, some-
times it’s useful to know whether a media query applies to
JavaScript logic as well. One example may be when requesting
additional, appropriately sized images for a gallery. MatchMedia
enables us to evaluate media queries in JavaScript.

To use it, simply pass any media type or query to the window.
matchMedia function, and it will return an object with amatches
property that is either true or false depending on whether the
media applies at that time:

if(window.matchMedia("(min-width: 45em)").matches){
// The viewport is at least 45em wide!

}

Okay, I didn’t mention a slight wrinkle: matchMedia is not
supported in every browser that supports CSS3 media queries.
So, before using it we either need to check to see if it’s sup-
ported at all or use a polyfill to make it work where it otherwise
wouldn’t. For those interested in the latter option, I wrote a
polyfill for matchMedia a few years back, and Paul Irish was kind
enough to set up a GitHub repository where we’ve continued
to maintain the script (FIG 2.20).

To use the polyfill, simply reference the matchMedia. js file
in your page to use window.matchMedia in any browser, even
one that doesn’t support CSS media queries! Not so fast, though:
you still need to be in a media-query-supporting browser for any
media query value to match (though media types like screen
work in just about any device with a screen).

With the polyfill in place, you can now use matchMedia to
test whether CSS3 media queries are natively supported, which
could be useful if you want to qualify the addition of advanced
scripting that should only apply in modern browsers. Just like
in CSS itself, the only all media query can give us just that
information.

80 RESPONSIBLE RESPONSIVE DESIGN

Beoog
O o o —_ e
spises 6t Blon Heip Boconant 0 % B

N Pofogued Glumaish - & Unaw P Fen m

] B reme

53 README ms

matchMedia() polyfill

test whether a CSS media type or media query applies

= Authors: Scart Jen. Pa.
- Native suppont ©

FIG 2.20: The matchMedia. js Project by Scott Jehl, Paul Irish, and Nicholas Zakas
(http:/bkaprt.com/rrd/2-21/).

if(window.matchMedia("only all").matches){

// Media gueries are natively supported!

}

Another potentially useful feature of the matchMedia API is
its ability to accept /isteners, allowing us to keep an ear out for
changes to a particular matchMedia query’s state after we check
it the first time. To ensure it’ll work broadly, the matchMedia. js
polyfill has a listener extension to support this part of the API as
well. Adding a matchMedia listener is pretty straightforward: call
amatchMedia function as seen above and assign an addListener
method to the end of it, like this:

window.matchMedia("(min-width: 45em)").addListener(»
callback);

SUSTAINABLE DETECTION 81

In this case, callback is a function you can define that ex-
ecutes every time the media query changes its state between
true and false. The first argument passed to the callback
function contains a reference to the matchMedia object, allowing
easy access to its matches property whenever the listener fires.
Here’s an example of how that function can plug in:

window.matchMedia("(min-width: 45em)")
.addListener(function(mm){
if(mm.matches){
// The viewport is at least 45em in width!
}
else {
// The viewport is less than 45em in width!
h
Yk

Media queries to IE: please respond, IE.

As you’ll likely remember from earlier in this chapter, Internet
Explorer versions 8 and older don’t support CSS media queries.
This means that a mobile-first responsive layout will render in a
layout intended for small screens on a desktop computer—still
usable, but not formatted in an ideal way for large-screen use
(FIG 2.21).

This drawback might put a damper on the whole responsive
design thing if it weren’t for some reliable workarounds.

First, we have a small polyfill script, respond.js (http:/
bkaprt.com/rrd/2-22/), that I developed during the Boston Globe
project to make old IE versions render responsive layouts as
if they understood CSS3 media queries. respond. js works by
reading every stylesheet referenced in a document to find all the
media queries contained therein. The script parses the values of
these media queries to look for either a minimum or maximum
width that can be compared against the viewport window’s
dimensions. When it finds a query that matches, it injects the
styles contained in that query into a style block in the page, al-
lowing the styles to apply in browsers that do not understand
media queries, and the script reruns this logic whenever the

82

RESPONSIBLE RESPONSIVE DESIGN

/* The Baston Globe - Windows Internet Explorer
Q- e bostangicbe.com > by X oo

Fle EBt Ves Faoctes Tods Heb

g rovontes | g

8 The Bston e & 0 Pagme Safetye Tosns

Fighting the Klamic State — how much will it cost?

Thet abaut to wade into another protracted canflict, snd once again thereis no financial stratesy

TODAY'S HEADLINES NEWSLETTER

Ger the day s 10p stories delivered to your inbax every morming

[Sign meup for Today's keadhines

Globe must-reads

n . i i b

FIG 2.21: An example of the Boston Globe homepage in IES.

browser is resized (and when a device’s orientation changes).
respond. js is intentionally limited in scope to keep it small and
fast, so it only supports min-width and max-width media que-
ries, which should be enough to pull off a reasonably responsive
layout for users of old IE.

To use respond. js, reference the script in your page any-
where after your CSS references. I recommend using an IE
conditional comment (a special comment syntax that old IE
browsers are designed to ignore) around the script tag as well, so
that the file is only requested in the versions of Internet Explorer
that need it. This particular conditional comment says: “If the
browser is IE less than version 9, parse the content of this com-
ment like all other HTML on the page.”

<!--[if 1t IE 9]><script src="respond.js"> »
</script><![endif]-->

SUSTAINABLE DETECTION 83

In
has

oore

TR ants BUsaEsS oy = FOLTCS LEESTIE

GET THE LATEST FALL FOLIAGE CONDITIONS

Liberian natives battle Ebola from afar

S Pagee Seletys Tock=

You can now read 10 articles a month for Iree, Read 25 much a8 you want anywhere and anytime for just 35¢.

The Boston Glob 5

MAGAZIE ey TO0AY'S PARER

US air war heats

up in Afghanistan

amid drawdown
mbs in

Tl Coalley, Bakerare
u more combative in
nd debate

Opinion =

rant Liberian comuunity, the Ebola epidemic O A

much will it cost? -

F @ mrat o R 0%

FIG 2.22: The Boston Globe website, viewed in IE8 with respond. js used for
media query support.

By including this script, the Boston Globe homepage is more
usable in old IE (Fic 2.22).

Avoiding the polyfill with static CSS

Another responsible approach to addressing old IE’s lack of
media query support is to serve IE additional CSS rules tl.w.at
essentially force it into rendering the styles from a responsive
design’s wider breakpoints. You can do this manually or Wlt'h
the help of CSS preprocessors such as Sass. For more on tl_ns
approach, check out Jeremy Keith’s 2013 article “Dealing with
IE” (http://bkaprt.com/rrd/2-23/).

This approach is only able to serve users running old IE a
fluid, but not responsive, layout, which may be fine depend%ng
on how broadly your fluid layout scales. However, depending

B4

RESPONSIBLE RESPONSIVE DESIGN

on your user’s screen size and your particular layout, it may or
may not make for an ideal experience.

Avoiding doing anything at all

As a third option, you might simply do nothing at all and serve
the responsive site to old IE as is. This leaves the layout in its
default non-media-query state. Depending on the layout, this can
be perfectly fine, especially if you set a reasonable max-width
on the layout to keep the line lengths in check.

TESTING RESPONSIBLY

To ensure that a site works across a variety of screen sizes, input
types, and browsers, you can’t beat testing on real devices. To get
a decent idea of the devices that it would make sense to amass
for a personal testing lab, see Brad Frost’s excellent post “Test
on Real Mobile Devices without Breaking the Bank” (http://
bkaprt.com/rrd/2-24/).

Devices are expensive to collect, so to test on an array of
relevant devices, the average developer may need to search for
a nearby community device lab, which is thankfully becoming
more common (FIG 2.23). For information about device labs in
your area, visit Open Device Lab (http://bkaprt.com/rrd/2-25/).

Testing on real devices is ideal, but we can’t possibly expect
to have access to even a fraction of the devices we need to care
about. When you don’t have access to a device, a device emula-
tor is a brilliant solution. Emulated devices do come with draw-
backs, such as misleading performance (because the browser is
running on different hardware than it would normally run on),
slow screen refresh rates that make animation difficult to test,
connection speeds that are often faster than the device would
typically have, and a lack of physical feedback that allows us to
get a true sense for how a site feels on a particular device. But
despite the downsides, emulators are a very reliable means of
diagnosing issues with CSS$ layout and JavaScript.

These days I do most of my own emulated browser testing
on BrowserStack (http://bkaprt.com/rrd/2-27/), which offers
real-time browser testing on platforms like iOS, Android, and

SUSTAINABLE DETECTION 85

FIG 2.23: Friends gathered around a collection of test devices and laptops. Photograph by
Luke Wroblewski (http:/bkaprt.com/rrd/2-26/).

Opera Mobile, as well as various Windows and Mac desktop
browsers (FIG 2.24). BrowserStack even offers a way to easily
test local sites on your machine, so you don’t need to upload
anything to test a page.

Also, T spend the vast majority of my development time in
a browser with strong developer tools, like Google Chrome or
Firefox, as their code inspectors give incredibly helpful insights
into how a site’s various components are working in unison, and
even allow me to test features that aren’t enabled in the browser
by default, like touch events. I only branch out to other physical
and emulated devices once a feature works to verify usability
and performance, a process I repeat over and over throughout
the development cycle,

As the number of web-accessing devices has grown, browser
testing has become a nuanced activity, requiring developers to
make subjective decisions about minor variations in the experi-
ence that individual devices receive. When pulling up a site on a

86 RESPONSIBLE RESPONSIVE DESIGN

@ Dashboard

i§ Android

E Samsung Galaxy S Il

[] Vou cas pow read 10 articles 3 maath for frve. Kesd s
ch s pous want arvpwhers nd aevptis ot st T9¢

= The Boston Globe =

W RS S hons :
Local Testing [amremsineioe] @
Testyour private server of HTML [
designs In ow remate biowser. 1o e . . .
£ US intensifies Afghan airstrikes

Start local testing L wcre barsln in A

o it the bnmes

Issue tracker
Start testing to caphure and share
bugs with your eam.

FIG 2.24: The Browserstack testing service.

particular device, I like to ask myself a series of questions about
the site’s design and functionality:

- Does the site load and present itself in a reasonable amount
of time?

- Is the core content and functionality usable and accessible?

« Does the level of enhancement in the layout feel appropriate
to the device?

- Is the text easy to scan? Do the line lengths promote
readability?

- Is the site controllable and browsable via common input
mechanisms on the device (touch, mouse, keyboard, etc.)?

- Are the actionable areas of the page easy to tap without tap-
ping on adjacent items?

+ Does the layout hold up to changes in orientation, viewport
resizing, and font size?

e c www.browserstack.com/start#os=android&os_version=4.1&device=Samsung+Galaxy+5+| @ Q Q@0 F % =

SUSTAINABLE DETECTION

87

. If the device has assistive technology installed (such as
VoiceOver), does the content read back in meaningful ways?
2 - .
Does the page scroll efficiently? Do animations run smoothly?
The more devices we can test, the better our chances of
reaching our users wherever they are.

NEXT UP

In this chapter, we covered many of the complexities of writing
sustainable, cross-browser code. With that, we can proceed to
our fourth tenet of responsible responsive design: performance.,
Because performance is a heavy topic—perhaps the one most
in need of our attention when building responsive websites
today—TI've dedicated two chapters to its discussion.

Let’s move ahead—with speed.

88 RESPONSIBLE RESPONSIVE DESIGN

