14 RESPONSIBLE RESPONSIVE DESIGN

{4 My love for responsive centers around the idea that my website will
meet you wherever you are-—from mobile to full-blown desktop and
anywhere in between.”
—TRENT WALTON, “Fit To Scale” (http:/bkaprt.com/rrd/1-01/)

RESPONSIVE DESIGN’S core tenets (fluid grids, fluid images,
and media queries) go a long way toward providing a holistic
package for cross-device interface design. But responsive design
itself relies on features that may not work as expected—or at all.
Our sites need to react to unexpected user behaviors, network
conditions, and uuique support scenarios.

In this chapter, we'll dig into two responsible tenets: usability
and accessibility. We'll cover higher-level considerations before
getting into nitty-gritty code you can implement now and expect

to last. To start, let’s talk design.

RESPONSIBLE DESIGN 1§

DESIGNING FOR USABILITY

When we consider usability in responsive design, we think
about how to present a design’s content and features across a
range of screen sizes and devices. Do the interface components
yield to the content when screen real estate is tight? Do the
components function intuitively in response to various input
modes? Are the content and hierarchy easy to parse? Do the
line lengths foster readability across screen sizes?

Get into the browser quickly

“Let’s change the phrase ‘designing in the browser” to deciding in
the browser.”

—DAN MALL, The Pastry Box Project (http://bkaprt.com/rrd/1-02/)

At Filament Group, we start most of our projects in Adobe
Mlustrator, where we iterate on high-level visual design con-
cepts. We then try to move to code as soon as possible. At this
stage, we aim to design the fewest number of interface variations
that communicate a plan for layout and interactivity across view-
ports—mere suggestions for how the site will look and feel on
any given device. Decisions about how features react to different
input mechanisms and browser capabilities, as well as the par-
ticular viewport sizes that should receive each layout variation,
remain to be determined. The goal is to move into the browser
as quickly as we can to make design and interaction decisions in
context, which translates to more informed recommendations
for our clients.

Find your breakpoints

The viewport sizes at which we change from one fluid layout

to another using media queries are called breakpoints. Here are
two examples:

16 RESPONSIBLE RESPONSIVE DESIGN

Vil e breakpoint */
@media (min-width: 520px){
...styles for 52@px widths and up go here!
¥
/* second breakpoint */
@media (min-width: 735px){
...styles for 735px widths and up go here!

}

While it’s tempting to choose breakpoints early in the de:iign
process, perhaps based on the dimensions of popular devices
we know we need to support, the truth is that we shouldn’t
choose breakpoints at all. Instead, we should find them, using

our content as a guide.

“Start with the small screen first, then expand until it looks like shit.
TIME FOR A BREAKPOINT!”
—STEPHEN HAY, http://bkaprt.com/rrd/1-03/

A layout’s design and content should shape and inform a
layout’s breakpoints. As Hay notes, the easiest way to find break-
points is simply to resize the browser viewport until the content
becomes awkward (that’s the technical term) to use or read—and
presto, a breakpoint.

In addition to a gut check, you might opt for a slightly more
objective guideline. Per Richard Rutter’s homage to Robert
Bringhurst, The Elements of Typographic Style Applied to the Web
(http://bkaprt.com/rrd/1-05/), an optimal measure—the numbel.r of
characters per line in a column of text—for immersive reading
is widely thought to fall between 45 and 75 characters, includ-
ing spaces (FiG 1.1). If you're resizing a layout outward, watch
for when a column of text approaches that range: it’s probably

a good place to adjust your layout. 7

As you work with complex responsive designs, you'll find
that breakpoints often occur at different times for different por-
tions of a layout, and that some are more significant than others.

RESPONSIBLE DESIGN

17

2.1.2 Choose a comfortable measure

“Anything from 45 to 75 characters is widely regarded as a satisfactory
length of line for a single-column page set in a serifed text face in a text
size. The 66-character line (counting both letters and spaces) is widely
regarded as ideal, For multiple column work, a better average is 40 to
50 characters.”

FIG 1.1: Here, a seventy-character line length makes for comfortable reading
(http://bkaprt.com/rrd/1-04/).

Major breakpoints mark big shifts, usually to add columns or
dramatically change the presentation of more than one com-
ponent; minor breakpoints involve smaller design tweaks (such
as changing a component’s font-size to prevent text wrap-
ping) that take full advantage of the spaces between the major
breakpoints. In general, I find that major layout breakpoints are
decided early in development, while minor ones act as finishing
touches. The fewer breakpoints we use, the easier a responsive
design will be to maintain.

Let’s look at an example. On the Boston Globe website, we
have two or three major layout breakpoints, but the more com-
plicated components break more often. The site’s masthead
component has four major breakpoints, as well as some minor
ones for slight adjustments to prevent text wrapping (FIG 1.2).

Design modularly

As in the masthead example, I find it helpful to compile the
multiple configurations of each modular component in isolation;
that way, I can test its usability and document its variations in
one place. Developer Dave Rupert of Paravel explored this con-
cept in his post “Responsive Deliverables” (http://bkaprt.com/
rrd/1-06/). “Responsive deliverables should look a lot like fully

18 RESPONSIBLE RESPONSIVE DESIGN

B a8

s i —p—

= e Toston Globe

i Major

! SECTIONS O uvsaveo q

First breakpoint: navigation and search options toggle on tap.

PEriirr ooy weanan mwre

“The Toston Glob Major

SECTIONS.) uvsaven a

Second breakpoint: logo moves left to split the width with the navigation.

O WEATHER | TRATIG

,‘%ﬁfﬁ. Q:llt %Bﬁtﬂu (B[Ube Major

SECTIONS Tooavsearen My saven a

Third breakpoint: logo moves back to center, search box visible at all times.

| © oussrens - DROITAL | HOMS DELIVERY

DY i The Boston Globe S Major
S

NEWS METRO ARTS DUSNESS SPORTS OPMION LIFESTYLE WMAGAZIE INSOERS TOOAYSPARER () MY SAVED

Fourth breakpoint: search box moves left of logo, navigation expands.

(D BOBTONCON CARS | J0OS | FEAL EATATE 2 e o4 DUGITAL VERY
N s The Boston Globe i

NEWS METRO ARTS DUSINESS SPORTS OFNON LFESTYLE MAGAZINE INOEAS TODAY'S PAFER & v saveo

Final breakpoint: search box widens, classified links visible at all times on top left.

FIG 1.2: Major and minor breakpoints of the Boston Globe's masthead.

functioning Twitter Bootstrap-style (http://bkaprt.com/rrd/1-07/)
systems custom tailored for your clients’” needs,” Rupert writes.
In other words, we should build and document our compo-
nents from the inside out, as standalone pieces that play nicely
with others.

Minor

RESPONSIBLE DESIGN

19

Same content, reduced noise

You've figured out how to find horizontal breakpoints across a
range of viewport sizes. How do you fit all that content on small
screens without making things noisy? Responsive design has
(undeservedly) received a bad rap because of sites that attempt
to avoid messy situations by hiding parts of the content from
users—denying access to content that was ostensibly important
enough to include in the first place. Remember, if it’s useful to
some people, it’s likely useful to everyone. As Luke Wroblewski’s
book Mobile First instructs, rather than hide content that’s in-
convenient to display, it’s best to reorganize the design to retain
usability on smaller viewports.

Fortunately, we have many design patterns that work
around small-screen constraints in interesting, intuitive, and
responsible ways.

Progressive disclosure

One such pattern is progressive disclosure, a fancy term for show-
ing content on demand. To be clear, not all hiding is bad; it’s
only bad if the user has no way to access the hidden content.
The idea behind progressive disclosure is simple: hide portions
of content, but provide interface cues so that users can view it
when they wish (Fic 1.3).

Progressive disclosure is most often a simple show-and-hide
like the example above, but we have plenty of ways to visually
toggle content. For instance, this property listing component
does a 3D flip upon tap or click to reveal additional information
about a property, such as its address and location on a map (FiG
1.4). For browsers without 3D CSS animation support, users can
toggle to the map without an animated transition, while basic
browsers display the map at all times, just beneath the property
information.

Off-canvas layout, a term coined by Luke Wroblewski in his
article “Off-Canvas Multi-Device Layouts,” describes another
notable approach to minimizing complexity on small screens

20 RESPONSIBLE RESPONSIVE DESIGN

The Boston Globe The Boston Globe
SECTIONS oMYSAVEﬂ Q SECTIONS oll\’ SAVED

OPINION
LIFESTYLE
MAGAZINE
INSIDERS

TODAY'S PAPER

(DDOITONCON CARS | 1085 | REAL ESTATE

3B e The Boston Globe

NEWS METRO ARTS BuSINESS. SPORTS OFNIDN UFESTILE MAGAZIHE WEDERS TODAY'S PAPER §uvsaven

FIG 1.3: Boston Globe's navigation uses progressive disclosure on small viewports.

(http://bkaprt.com/rrd/1-08/). Wroblewski documents several
patterns for positioning lower-priority interface components
offscreen until users cue them by tapping a menu icon or
similar item; the formerly offscreen content then enters the
viewport, overlapping or pushing aside the primary content
(FiG 1.5). This on-demand approach is becoming common in
small-screen layouts.

Responsive tables

Tabular data is one of the toughest content types to present on
a small screen. It’s often essential that the user see column and

= DXTAL | FOME DELIVERY

q

RESPONSIBLE DESIGN 21

Property Details
4 bedroom / 3 bath
2-car garage

Location
78 Rivervale Drive
Cottonwood, GA

Property Detaills n
A hacrooim / 3 bath 1-‘
-can gwage .
Location “
T8 Rivervale Deve .
Cottonwood, GA = 1 .
[}
View Map % | "
Sated e []
: L}
i *
,?’ . .
&
[oot 5 J ¢
' [
|
! {ig1 |
{za1) % |
A ot A
¢ >) . |
S | Satellite == |
338)
(o) . o Traffic
- ¢ { -

h s

i@i 1

Dublin

[+] & Moy gt Details % I

FIG L.4: Progressively disclosed content flips in 3D to display more information.

22 RESPONSIBLE RESPONSIVE DESIGN

|/ Status @ Photo & Check In
'3

z =1 News Feed
ﬂ Sue Edwards Jehl shared a fink.

Fa Stephanie Jehl

Messages
Events
§ Nearby Places

Friends

Hey Teachers! Remind Saves You
Time.

Find Friends Time.

Photos
ol Like i Comment 4 Share

| Notes

FIG 1.5: Tapping the menu icon reveals Facebook’s off-canvas navigation from
the screen’s left edge.

row headers associated with a table cell, and yet we can only fit
so many rows and columns on screen (FIG 1.6).

At Filament, we experimented a lot and found a couple of
patterns that worked well enough to include in the jQuery
Mobile framework. The first pattern, Reflow (http://bkaprt.com/
rrd/1-09/), reformats the table from a multi-column view to a list
view; each cell becomes its own row, with a row header to its
left. (F1G 1.7).

To pull this off, Reflow uses CSS to set each cell in the table
todisplay: block, creating a new row, and JavaScript to grab
each of the table’s column headers and insert them in each cell
to serve as the labels (while hiding the additional labels from
screen readers). Reflow suits simple tables that act like formatted
lists, but its small-screen presentation falls short when you need
to compare data points across rows.

RESPONSIBLE DESIGN 23

W iPhone 5 A

s e
iPhone 5 iPhone 5 Galaxy SHI Lumia 820 One X
[Samsung Galaxy Sl

|’ . y: 1

s Nokia Lumia 920
|

FIG 1.6 Large tables can cause usability
trouble on small screens. NG RH

H HTC One X

487 538" 53 ETono
Gelary M 231 278" 275 .
= Wy 03 034" 037" E = B
/ —n Y |
— 025 028 029 /
prEZT | o
4
B | a7 538° 51 55
B L | 23" 278 279" 275"
03 034" 0.42 0ar
025 0z 041 029

FIG 1.8: An example of the jQuery mobile Column Toggle table pattern, with the same table
shown at narrow and wide widths.

The Column Toggle (http://bkaprt.com/rrd/1-10/) pattern picks
up that slack. It works by selectively showing columns in a table
as horizontal space allows. If there isn’t room, CSS hides the
column data, but a menu offers users the chance to override the
CSS and display the column anyway, eventually causing the table
to expand wide enough to warrant horizontal scrolling (FiG 1.8).

These are only two of the numerous potential patterns for re-
sponsibly presenting tabular content. For more examples, check

i R Vear Rating Reviews out Brad Frost’s project Responsive Patterns (htt p://bkaprt.com/
e e 1 craenKane e rrd/1-11/). You'll find everything from horizontal navigation
vi 1942 97% " . .
- " 3 Eauh!a!:ﬁ: w2 are o components that collapse into menus when space is tight to
3 The Godtather . .
Aaing o 4 Gonauinihewing e o & CSS-Flexbox-driven grids for complex page layouts.
Reviews 4 1962 94% 87
5 Lawrence of Arabla
8 Dr. Stranaelovs Or How | Learned to Stop Worrving and Love the Bomb 1964 82% 74
Rank 2 7 The Graduate e g D ES IG N ' N G FO R TO U C H
MovieTiile Cosablanca & TheWiardolOz 1939 0% 72
Year 1942 9 Sinaln'Inthe Rain s % & (AN D EVE RYT H I N G EI_S E)
Rating a7% 10 Inception e Bee
A responsive layout is but one step. Even if your site flows
. i ile Reflow table pattern, with the same table shown t) -
MG LA E’;am.zle O{;th: sy MebleRe d beautifully from one screen size to the next, you're not doing
t narrow and wide widths.) ; . . .
e your job if someone can’t use it. Touch isn’t only the domain of
RESPONSIBLE DESIGN 2§
24 RESPONSIBLE RESPONSIVE DESIGN

small screens; many devices offer touch alongside other input
mechanisms. But as the number of people on touch devices
surges, we must add touch to our arsenal of common interac-
tions like mouse, focus, and keyboard. While the intricacies of
touch can be daunting, we don’t need to completely overhaul
our designs to be touch-friendly. Far from it: one of the joys of
responsible design is how it builds on our everyday tool set.
Two basic measures pack a wallop on the usability of an existing,
mouse-based interface:

. Make sure any content that offers mouse-centric interactiv-
ity (like hover) is also accessible in browsers where a mouse
pointer may not exist.

. Don’t assume touch will be used, but design as if it will be.
Let’s see how these play out with the following considerations.

Save hover for shortcuts

The absence of mouseover (or hover) interactions is one of the
biggest changes when learning to support touch. In fact, the
lack of mouseover support on many touch devices is a primary
reason that many sites designed for the desktop web falter in
touch contexts, resulting in usability problems that prevent us-
ers from accessing certain features. You can’t rely on mouseover
for vital design interactions, but you can use it as a nice-to-have
alternate way to reach otherwise accessible content.

One example is the navigation for the Global News Canada
website, designed by Upstatement and developed by the
Filament Group team (FiG 1.9). The global navigation links users
to National, Locals, and Watch section homepages when clicked
or tapped. These links also feature split-button drop menus that
toggle between sections on hover. On a touch screen, one tap
directly sends users to that section’s homepage, so we came up
with an alternative mechanism to toggle between menus and
account for all breakpoints. The split buttons with arrows next
to each navigation link do just that, offering tap or click access
to the drop menus.

26 RESPONSIBLE RESPONSIVE DESIGN

Shaw) comect Expand »

YOUR REGION NATIONAL -

Global NATIONAL
NEWS

wieaifl : 5 Ty,

WATCH: Gigantic fish eats 4-foot shark
in one bite

FIG 1.9: The split-button menus on GlobalNews.ca work for touch and mouseover.

Keep in touch

One rule of thumb(s): the devices accessing your site may or
may not have touch screens, but always design as if they will.
Fingers aren’t precise, so we need to enlarge button and link
target areas to make them easier to tap. How much bigger is
an open discussion, though Apple’s guidelines suggest 44 x 44
pixels as the minimum size for usable buttons. Based on find-
ings from MIT’s Touch Lab (http://bkaprt.com/rrd/1-12/), the
Smashing Magazine article “Finger-Friendly Design: Ideal Mobile
Touchscreen Target Sizes” by author Anthony T suggests slightly
larger targets at 45-57 pixels, and 72 pixels for buttons for thumb
use, like the ones located near the bottom of a handheld device’s
screen (FIG 1.10).

Don’t forget your white space! Equally important as the size
of touchable elements is the space around those elements. A
smaller button surrounded by dead space can be as easy to use
as a larger element, so the size of the button within its tappable
footprint becomes a question of visual emphasis.

Q

RESPONSIBLE DESIGN 27

[Piceoisy

72 Pixel Touch Target
Thumb fits snugly inside. Target edges
give visual feedback. Thumb pad is used
instead of thumb tip.

57 Pixel Touch Target
Index finger fits snugly inside. Target edges
give visual feedback. Finger pad is used
instead of fingertip.

FIG 1.10: |llustrations from Smashing Magazine's article (http://bkaprt.com/rrd/1-13/).

The usual gestures

Touch screens offer the potential for richer interactions than
tap alone—many touch gestures have become commonplace,
particularly in native apps. This diagram by Craig Villamor,
Dan Willis, and Luke Wroblewski demonstrates some popular
gestures in touch interaction (FiG 1.11).

You're probably familiar with most of these gestures, which
are used by operating systems on several devices (including iOS).
Within browsers, these gestures are often paired with conve-
nient default behavior that varies from device to device; some
gestures share the same behavior. For example, a double tap or
pinch or spread in iOS Safari causes the browser to zoom in or
out on a particular region. Dragging or flicking in any direction
causes the page to scroll; and a press, or touch-hold, often ex-
poses a context menu akin to what you'd see when right-clicking
with a mouse.

Native gestures like these have all sorts of implications for
how we can responsibly develop for touch. Users form expecta-
tions about their devices’ native features, so we don’t want to
disable or repurpose a feature like touch-hold if we can avoid
it. While browsers do let us use touch events like touchstart,
touchmove, and touchend (or the new standard pointer events
pointerdown, pointermove, pointerup, etc.) to specify gestures
with JavaScript, how can we do so without conflicting with na-
tive touch behavior?

28 RESPONSIBLE RESPONSIVE DESIGN

Tap Double Tap Drag Flick

Beisfy touch mrtace wan fogertip. Ragictly touch surtace wios wih ngéstip, Move fingertip over surtace without losing Ouickly brush surface with frayrtip,
CONMACE.

CORE GESTURES CORE GETIJRES’) CORE GESTURES 'CORE GESTURES

Pinch Spread Press Press+Tap

Touch surtace with two tingers and bring Touich S£300 With two frgers and mave Touch suriace for extended period of fima. Press suriace wih one fingar and Loy

them closer togather. tham apart. 10uCh Srtts wih £econd fnger

concaeswnes concomswnes | comcammumss comeassmumes

FIG 1.11: Touch Gesture diagram (http://bkaprt.com/rrd/1-14/).

Web-safe gestures: do they exist?

Let’s compile a list of web-safe gestures we can use in our sites
(spoiler: it’s short). Based on the native gestures in today’s popu-
lar devices, we have tap, two-finger tap, horizontal drag, and
horizontal flick. Yet within this small list, we still have poten-
tial for conflict. For instance, Chrome on iOS and Android al-
lows users to horizontally swipe to switch between open tabs,
while i0OS Safari uses the same gesture to go back or forward
in browser history, which means our use of those gestures can
lead to unexpected behavior. Horizontal drag gestures can also
introduce issues even in touch browsers that don’t use them
for native navigation. For example, if a page’s content stretches
wider than the browser’s viewport, which often happens after
zooming in, a horizontal touch-drag is typically used to scroll
the page right or left, so we have to be careful that our custom
touch gestures don’t interfere.

RESPONSIBLE DESIGN

29

FIG 1.12: The multiple-input-mode
carousels on the Baston Globe site.

flagazine =
il @lubt‘i_lr!:mashw

3

3
J

-

< DEC 9, 2012 >
The drug lab scandal: Who's eleaning it up?

‘he New England Aquarium’s splashy new look
| great spots for urban birding in Boston and beyond

Keep in mind that I've deemed these gestures safe only be-
cause I'm unaware of any touch-based browsers that use them—
yet. The moment iOS implements two-finger tap, anything
we’ve built may conflict with native behavior, and that’s not
future-friendly at all. This doesn’t mean we should avoid build-
ing custom gestures, but it highlights the importance of develop-
ing for many input modes. If one fails for any reason, we’ll have
alternate ways to access our content.

In practice, this means ensuring there’s always a click-and-
keyboard-based interface for interaction. For example, the car-
ousel of magazine covers on the Boston Globe site has several
interactive options (FIG 1.12). You can click the arrows beneath
the carousel, click the covers to the right or left of the featured
image, use the right and left arrow keys on your keyboard,
or touch-drag the carousel on a touch device. Think of touch
gestures as a nice-to-have enhancement on top of broadly sup-
ported input modes.

Perhaps a bigger problem with touch gestures is discovery,
as touch gestures often lack any visual interface to hint at their
presence. We ran into this dilemma when building the Boston
Globe's saved articles feature, which allows you to save articles to
your account so you can read them later. On small screens, the
Save buttons hide by default but can be toggled into view with a

30 RESPONSIBLE RESPONSIVE DESIGN

9:42 PM
localhost

Parents more cautious as Cape
camp scandal widens

The sexual-abuse scandal enveloping a Cape Cod
religious camp is stirr ase among parents just
as Lthey plan for their children’s summer getaways.

ECONOMY
Mass. economy rebounding, but
employment lags

Experts say state leads nation, but hiring still a
concern.

Developers tap into apartment
demand

Finaneing for office towers and high-rise condos has
slowed, increase in apartment complexes proposals.

9:43 PM
localhost

Parents more cautious as C ap@
camp scandal widens

The sexual-abuse seandal enveloping a Cape Cod
religious camp is stirring unease among parents just
as they plan for their chiklren’s summer getaways.

ECONOMY
Mass. economy rebounding, bm
employment lags

Experts say state leads nation, but hiring still a
coneern.

Developers tap into apartmenm
demand

Financing for office towers and high-rise condos has
slowed, increase in apartment complexes proposals,

FIG 1.13: Boston Globe's Save buttons become visible via two-finger tap.

two-finger tap (FiG 1.13). Of course, there is no easy way to know
that unless you visit the help section and read the instructions!

Scripting touch interactivity

Touch-screen browsers are typically capable of using compo-
nents designed for mouse input, so outside of accommodating
touch from a design perspective, you may not need to do any-
thing special with JavaScript to ensure touch support. However,
touch-specific events do exist, and the advantage of scripting
with them is often a matter of richness and enhancement. When

RESPONSIBLE DESIGN

31

developing components, for example, it’s particularly nice to
write code that listens for touch events because they respond
immediately to touch interaction. By comparison, in many touch
browsers, mouse events like click and mouseup typically fire
300 milliseconds or more after a user taps the screen (the device
waits to make sure that a double tap isn’t happening before it
handles the c1ick), so any site that’s coded to respond to mouse
events alone will suffer minor but noticeable delays. That said,
scripting touch gestures can be tricky because most browsers
that support touch emit both mouse and touch events whenever
a touch occurs. Further complicating things, browsers some-
times use different touch-event names (such as the widely used
touchstart rather than the emerging standard, pointerdown).
Whatever touch-screen optimizations we make, it’s crucial
not to hinder people’s ability to interact with content using
non-touch input mechanisms like the mouse and keyboard. A
commion, responsible approach to ensure that touch interac-
tions work as fast as possible is to set up event listeners for
both mouse and touch events. During a particular interaction,
the logic would handle whichever event type happens first
and ignore the other to prevent the possibility of running any
scripting twice. Sounds straightforward, but it’s not. That’s why
I recommend using a well-tested, open-source JavaScript library
to do the hard work for you. I use Tappy.js (http:/bkaprt.com/
rrd/1-15/), a script I created to allow you to listen for a custom tap
event when writing jQuery code. Here’s Tappy in play:

$(".myBtn").bind("tap", function(){
alert("tap!");
1)

Behind the scenes, that tap event is listening for touch, key-
board, or mouse clicks to perform a specific behavior. (In this
case, it throws an alert that says, “tap!” I'm sure you can find
better uses for it, of course.)

For a library that offers a more advanced set of touch features,
check out FastClick (http:/bkaprt.com/rrd/1-16/), created and
maintained by the talented team at Financial Times.

32 RESPONSIBLE RESPONSIVE DESIGN

DESIGNING FOR ACCESS

We've covered some major aspects of usability, such as design-
ing for screen variation, finding breakpoints, and handling in-
put modes inclusively. But for components to be usable across
devices, we must make sure that they’re accessible in browsers
that don’t support our ideal presentation or behavior, and for
users who browse the web with assistive technology. For these
reasons and more, you can’t do a better service to your users
than to start with plain old HTML. A major strength of HTML
is its innate backward compatibility, which means pages built
with even the latest iterations can still be accessed from almost
any HTML-capable device.

While HTML documents are born quite accessible, they don’t
always stay that way: careless application of CSS and JavaScript
can render formerly accessible content completely unusable,
leaving users worse off than they were with the initial, bare-
bones experience. For example, consider a drop menu whose
content is hidden with display: none;. With exceptions, screen
readers will relay only the content that is presented on screen
so if precautions aren’t in place, that menu’s content will noi
only be hidden visually, it will also be hidden audibly from screen
reader users. We must provide meaningful cues to alert all us-
ers—not just those browsing the web visually—that the menu
content exists and can be shown (or heard) when desired.

As we continue to push HTML toward new interactivity, it’s
critical that we think of access as something we constantly risk

losing, as something we must retain throughout our develop-
ment process.

Ensure access with progressive enhancement

The idea that the web is born accessible pairs neatly with the
concept of progressive enhancement, which advocates starting
with functional, meaningful HTML and then unobtrusively
layering presentation (CSS) and behavior (JS) on top for a richer,
more dynamic user experience.

With power comes responsibility. Any time you venture
beyond standard browser rendering of HTML into building

RESPONSIBLE DESIGN 33

FIG 1.15: A standard input and label
styled as a button.

Slider: o ' : from a standard text and box presentation into the button-like
32

component shown below (FiG 1.15):
Font styling: ————— Foat styling:

b 0 i Ou <label class="check">

o <input type="checkbox">Bold

</label>

A CSS-alone approach has triple benefits. It’s simple, light-
weight, and, most important, using native HTML form ele-
ments almost guarantees that the control will be accessible to
users with disabilities. In other words, assistive technology like
Apple’s built-in VoiceOver screen reader will read the native
control aloud as if the visual enhancements aren’t even there:
“bold, unchecked checkbox” by default and “bold, checked

Fic 1.14: A view (left) of the underlying native controls behind an enhanced
user interface (right).

your own presentation and interactivity, you're responsible for checkbox” when checked.
accessibility. This requires some planning. As developers, we ‘ Easy, right? However, it can be difficult to maintain this level
must “see through” our visual interface designs to discover their of accessibility with more complex custom components.

underlying meaning in HTML. .
In Filament Group’s book Designing with Progressive

; Responsibly enhance a complex control
Enhancement, we describe this process as the x-ray perspective P y p

Let’s focus those x-ray specs on something more abstract, such

. as a slider (Fic 1.16):
The x-ray perspective is a methodology we've developed to A great feature in the HTMLS specification is the new set of
evaluate a complex site design, break it down to its most basic form input types like number, color, and search. You can safely
modular parts, and build it back up in such a way that a single use thesF: types today to deliver more specialized interactivity in
coded page will work for modern browsers with full functional supporting browse_rs; browsers that don’t understand them will
capabilities as well as other browsers and devices that may simply x;encEer the input as a standarf:l text type.
understand only basic HTML. Here’s some markup for a color input:
The process of x-raying a design’s parts may require a certain <label for="color">Choose a color:</labels

amount of creative thinking; it depends on how closely a custom <input type="color" id="color"s

control resembles a native equivalent. Some are fairly transpar-

ent: say, a button that acts as a checkbox input. In this case, a FIGURE 1.17 shows how it renders in Google Chrome, a sup-

bit of CSS alone could render some label and input markup porting browser.

34 RESPONSIBLE RESPONSIVE DESIGN RESPONSIBLE DESIGN 35

Results Shown:

FIG 1.16: A custom slider control with a numerical input.

Choose a color:

———— o ZWM 3
R e
| Palette: | Apple : @
R L S
Bl siue
B Brown
Cyan
B Green
[0 Magenta
B Orange
B Purple
B Red
Yellow
White

FIG 1.17: A color input with a color
picker in Google Chrome.

FIGURE 1.18 shows it in iOS 7, a non-supporting browser.

Another new form input is range, which displays a slider con-
trol in most browsers. But the generated native slider leaves a lot
to be desired from a design and usability perspective. For one,
its appearance is vexing—sometimes impossible—to custom-
ize. Depending on the browser, the native slider lacks any text
label to display the slider’s value, making it useless for choosing
precise values. For example, FIGURrE 1.19 shows how a native
range input with possible values of 0-10 renders in iOS 7 Safari.

<label for="value">Choose a value:</label>
<input type="range" id="value" min="@" max="10">

36 RESPONSIBLE RESPONSIVE DESIGN

FIG 1.18: A color input falls back to a
Carrier T 10:49 PM plain text input in iOS 7.

jsbin.com

Choose a color:

[

Done

QIWIEIRITIY§UE | ;O P

FIG 1.19: A range input rendered

in iOS 7 Safari, which gives no
feedback about minimum, maximum,
e S _sumy I or current value.

Choose a value:

Unless we're designing a music-volume control, this slider
isn’t helpful. If we want to create a usable, touch-friendly slider,
we'll need to build it ourselves. Let’s do so in a way that works
for everyone.

RESPONSIBLE DESIGN 37

F1G 1.20: Our foundational HTML
markup as rendered in a browser.

Results Shown: 61

The first and most important step is to start with our pal,
HTML. Deep down, a slider is a visualization of a numeric scale,
so let’s begin with an input elementand give itatype of number,
which is another HTML5 input that degrades to a text input
in non-supporting browsers. Using number has the benefit of
allowing us to use several standard, complementary attributes
that shape the control’s constraints: min and max. We'll use these
attributes as our HTML starting point (FIG 1.20):

¢label for="results">Results Shown:</label>
<input type="number" id="results" name="results" »
value="60" min="@" max="100" />

Now that we have our foundation, we can use JavaScript to
create a slider component that will manipulate the input’s value
when the user drags its handle.

The actual scripting to pull that off lies beyond this book’s
scope, but I will cover the resulting generated markup and how
to make sure the slider doesn’t hinder accessibility. First, the
newly generated markup in bold:

<label for="results">Results Shown:</label>

<input type="number" jd="results" name="results" »
value="60" min="@" max="180" />

<div class="slider">

</div>

Let’s walk through the changes. To create our slider handle
and track, we need to use an element that is natively focusable
via keyboard, in this case an a element, to which I assigned the

38 RESPONSIBLE RESPONSIVE DESIGN

Results Shown:
element shown to the left.

61

class handle for reference. We also need a div container element
for the .handle to be visually styled as a slider track. As a user
drags the handle or taps their arrow keys, we use JavaScript to
manipulate the handle’s CSS 1eft positioning with a percentage
that reflects the distance the user has dragged, and update the
value of our input control as well. I've included our new slider
markup in bold (FiG 1.21);

<label for="results">Results Shown:</label>
<input type="number" id="results" name="results" »
value="61" min="0" max="180" />
<div class="slider"»

</div>

CSS styling aside, that’s the bulk of the behavior a basic slider
control needs to perform. But our work isn’t done. Our page
started out accessible, but with JavaScript we’ve introduced
markup that’s playing an unnatural role—that anchor element
with a class of .handle. When a screen reader encounters this
element, it will read it aloud as “number link” because it appears
to be an ordinary link with an href value of #.

To prevent this markup from leading to a confusing experi-
ence, we have two options: we can either hide the slider from
screen readers (since the text input already exists) or do ad-
ditional work to make the slider itself meaningful to screen
readers. I prefer the simplicity of hiding the new control; all we
need to do is add an aria-hidden attribute to the div, ,which
tells a screen reader to ignore the contents of that element when
reading the page aloud:

FIG 1.21: Our slider div, with the input

RESPONSIBLE DESIGN 39

¢<label for="results"»>Results Shown:</label>

<input type="range" id="results” name="results" » Economic Winners and Losers Profits +44.7%
value="61" min="@" max="16@" /> 40— Change since the end of 2007, Stocks +43.2%
¢div class="slider" aria-hidden>
 =
</div> e
Just like that, we've progressively enhanced our input into +10% —
a better visual presentation without undermining accessibility. up e SR
“But... ARIA what?” you may ask. Briefly, the W3C'’s Accessible pownN
Rich Internet Applications (ARIA) specification is a set of HTML i — _
attributes that embed semantic meaning in HTML elements that vV ~10.8%
play a non-native role—whether that’s an a acting as a menu but- 0=
ton instead of a link (which would use ARIA’s role="button")
attribute) or a ul acting as a navigable tree component (the v
role="tree" attribute), as you'd see when browsing a list of it — / ———
files in an operating system window. There’s even an ARIA 2008 2008 2010 201 2012 IR oot

role to describe a slider, if we wanted to go that route with our
component above: role="slider". In addition to those role-
based attributes, ARIA provides state attributes that describe the
state a control is in, such as aria-expanded, aria-collapsed, FiG 1.22: This complex line chart was delivered via an ing element
and aria-hidden (used above), and even attributes to describe (http://bkaprt.com/rrd/1-18/).

the current and possible values of a custom slider control. Find
out more about ARIA over at the W3C’s site (http://bkaprt.com/
rrd/1-17/). <img src="chart.png" alt="Economic winners and losers, »
Change since...">»

Sources: Bureau of Ecanomic Analysis; Bloomberg; Sentier Research; Bureau of Labor Statistics; Case-Shiller

Make data visualizations accessible '
How can we communicate this better? Ready those X-ray

Data visualizations, like charts and graphs, are often delivered specs. As we did with the slider, perhaps we could choose a
in ways that aren’t terribly meaningful for those using assistive more meaningful starting point from which to create this graph
technology. For example, take a complex line chart in a New York Consider the pie chart in FIGURE 1.23, for example HDW%Tliphé
Times article, delivered via an img element (FiG 1.22). webuilditina way thar provides mor’e e to.screen reid_
To a screen reader, all of the information in this chart is in- ers than an img tag can?
visible. Now, a responsible developer might (at the very least!) We can start with HTML that’s meaningful to all users and
go as far as adding an alt attribute to describe the chart’s data, present the chart as an enhancement. By peering through the
but such data can be impossible for a single string of text to chart to its underlying meaning, we might discover that a chart’s
describe meaningfully: bones could be described with an HTML table element. We

0 RESPONSIBLE RESPONSIVE DESIGN
4 RESPONSIBLE DESIGN 41

Employee Sales Percentages

. Mary . Tom @ Brad . kate

v ; -
FIG 1.23: How can we meaningfully deliver complex graphics to screen readers?

Employee Sales Percentages
Emplayee Salea
Masy 1228%
Tain 1069% %
el 2058%

Kete 36.46%

@My @ Tm ©®Bud @ ke

FIG 1.24: A canvas-generated chart visualization of the table on the left.

42 RESPONSIBLE RESPONSIVE DESIGN

could then parse the HTML markup below with JavaScript to
dynamically draw the chart with a technology like HTML5’s
canvas or SVG. Once the chart is generated, we might even
choose to accessibly hide the table by positioning it off screen,

deeming the chart a visual improvement over the table it re-
places (FiG 1.24).

<table>
<summary>Employee Sales Percentages</summary>
<tr>
<th>Employee</th>
<th>Sales</th>
</tr>
<tr>
<td>Mary</td>
<td>32.28%</td>
</tr>
<tr>
<td>Tom</td>
<td>10.69%</td>
<tr>
<Ery
<td>Brad</td>
<td>20.58%</td>
<fth>
<tr>
<td>Kate</td>
<td>36.46%</td>
</tr>
</table>

We’ve only scratched the surface of everything we should
consider when building accessible, complex interfaces. But
it’s hard to go wrong when starting with markup that is valid,
accessible, and functional on almost any device, and layer en-
hancements from there. It’s a fine line between an enhancement

and a hindrance, one that we as responsible developers must
carefully walk.

RESPONSIBLE DESIGN 43

s : : ; —
Bulld%ng. this way is a cle'ar win -for access, but p anning for Pty A GGk

such variation makes for an interesting challenge when it comes Graded experiences

to communicating these expectations to our clients and QA

testers. Perhaps a tweak to how we define support is in order...

Grade C: Easic fermatting, link to map

An enhanced support strategy

In the article “Grade Components, Not Browsers,” I expanded
on a great idea by my colleague Maggie Wachs about defining
support granularly for each site component (rather than as- Grade B: Same formatting, interastive map in page -
signing a grade to a browser as a whole, as is common with ap- Recplrest Ietascrigt. A Support

proaches like Yahoo's Graded Browser Support) (http://bkaprt.
com/rrd/1-19/). The documentation we share with our clients
assigns graded levels for each component based on its major
tiers of enhancement.

As an example, the following image shows enhancement lev- ‘ ; _
els for a property detail component on a real estate website (FiG [e
1.25). The enhancement level that a browser receives depends I T L7
on several conditions, such as support of features like Ajax and '
3D CSS Transform.

This documentation accomplishes a few things. For one, ‘
it helps us to itemize for our clients the particular conditions Grade A: Same formatting. map revealed with 30 fio

; . . Requires: CSS 3D transform support

that enable portions of their site to work at an enhanced level,
so everyone (designers, clients, and quality assurance testers) ‘
knows what to expect. It also acts as a reminder that some com- ;
ponents may receive a higher grade than others, depending on |
the browser. In other words, feature support varies across even |
modern browsers, so a browser may receive a bells-and-whistles "
A-grade experience for one component and a less-enhanced
B-grade experience for another.

When we document support this way, we shift the focus
from the browser to its features and constraints. We start to
think of support as less a binary switch—or even a scale—than =
a scatter plot. In this system, every browser that understands =/
HTML is supported and is guaranteed access to the site’s primary : ;
features and content. As Jeremy Keith points out: “It’s our job to L S -

FIG 1.25: A graded documentation of a feature whose presentation varies across browsers.

44 RESPONSIBLE RESPONSIVE DESIGN RESPONSIBLE DESIGN 45§

explain how the web works...and how the unevenly-distributed
nature of browser capabilities is not a bug, it’s a feature” (http://
bkaprt.com/rrd/1-20/).

Speaking of features, we need reliable, device-agnostic, and
sustainable ways to detect them. Let’s move on to look at the
why and the how of doing so.

46 RESPONSIBLE RESPONSIVE DESIGN

